Journal of Mathematical Chemistry

, Volume 49, Issue 7, pp 1263–1282 | Cite as

Linear conjugacy of chemical reaction networks

Original Paper

Abstract

Under suitable assumptions, the dynamic behaviour of a chemical reaction network is governed by an autonomous set of polynomial ordinary differential equations over continuous variables representing the concentrations of the reactant species. It is known that two networks may possess the same governing mass-action dynamics despite disparate network structure. To date, however, there has only been limited work exploiting this phenomenon even for the cases where one network possesses known dynamics while the other does not. In this paper, we bring these known results into a broader unified theory which we call conjugate chemical reaction network theory. We present a theorem which gives conditions under which two networks with different governing mass-action dynamics may exhibit the same qualitative dynamics and use it to extend the scope of the well-known theory of weakly reversible systems.

Keywords

Chemical kinetics Stability theory Persistence Complex balancing Dynamical equivalence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bamberger A., Billette E.: C R Acad. Sci. Paris Sér. I Math. 319(12), 1257 (1994)Google Scholar
  2. 2.
    Feinberg M.: Arch. Ration. Mech. Anal. 132(4), 311 (1995)CrossRefGoogle Scholar
  3. 3.
    Pachter L., Sturmfels B.: Algebraic Statistics for Computational Biology. Cambridge University Press, Cambridge (2005)CrossRefGoogle Scholar
  4. 4.
    Sontag E.: IEEE Trans. Automat. Contr. 46(7), 1028 (2001)CrossRefGoogle Scholar
  5. 5.
    Feinberg M.: Arch. Ration. Mech. Anal. 49, 187 (1974)Google Scholar
  6. 6.
    Horn F.: Arch. Ration. Mech. Anal. 49, 172 (1972)CrossRefGoogle Scholar
  7. 7.
    Horn F., Jackson R.: Arch. Ration. Mech. Anal. 47, 81 (1972)CrossRefGoogle Scholar
  8. 8.
    Siegel D., Chen Y.F.: Can. Appl. Math. Q. 2, 413 (1994)Google Scholar
  9. 9.
    Siegel D., MacLean D.: J. Math. Chem. 27, 89 (2000)CrossRefGoogle Scholar
  10. 10.
    Vol’pert A.I., Hudjaev S.I.: Analysis in Classes of Discontinuous Functions and Equations of Mathematical Physics. Martinus Nijhoff Publishers, Dordrecht, Netherlands (1985)Google Scholar
  11. 11.
    Craciun G., Feinberg M.: SIAM J. Appl. Math. 65(5), 1526 (2005)CrossRefGoogle Scholar
  12. 12.
    Craciun G., Feinberg M.: SIAM J. Appl. Math. 66(4), 1321 (2006)CrossRefGoogle Scholar
  13. 13.
    G. Craciun, C. Pantea, in Proceedings of 2010 IEEE International Symposium on Circuits and Systems (ISCAS) (2010)Google Scholar
  14. 14.
    Schlosser P.M., Feinberg M.: Chem. Eng. Sci. 49(11), 1749 (1994)CrossRefGoogle Scholar
  15. 15.
    Anderson D.: SIAM J. Appl. Math. 68(5), 1464 (2008)CrossRefGoogle Scholar
  16. 16.
    Anderson D., Shiu A.: SIAM J. Appl. Math. 70(6), 1840 (2010)CrossRefGoogle Scholar
  17. 17.
    Craciun G., Dickenstein A., Shiu A., Sturmfels B.: J. Symb. Comput. 44(11), 1551 (2009)CrossRefGoogle Scholar
  18. 18.
    G. Craciun, F. Nazarov, C. Pantea, available at arXiv:1010.3050v1Google Scholar
  19. 19.
    Craciun G., Pantea C.: J. Math Chem. 44(1), 244 (2008)CrossRefGoogle Scholar
  20. 20.
    Craciun G., Pantea C., Rempala G.: Comput. Biol. Chem. 33(5), 361 (2009)CrossRefGoogle Scholar
  21. 21.
    Szederkényi G.: J. Math. Chem. 47, 551–568 (2010)CrossRefGoogle Scholar
  22. 22.
    G. Szederkényi, K. M. Hangos, available at arXiv:1010.4477.Google Scholar
  23. 23.
    Szederkényi G., Hangos K.M., Péni T: MATCH Commun. Math. Comput. Chem 65(2), 309 (2011)Google Scholar
  24. 24.
    Averbukh E.D.: Automat. Remote Contr. 55(12), 1723 (1994)Google Scholar
  25. 25.
    Krambeck F.J.: Arch. Ration. Mech. Anal. 38, 317 (1970)CrossRefGoogle Scholar
  26. 26.
    MacLean, D., Master’s Thesis, University of Waterloo (1998)Google Scholar
  27. 27.
    Perko L.: Differential Equations and Dynamical Systems. Springer, Berlin (1993)Google Scholar
  28. 28.
    Wiggins S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, Berlin (1990)Google Scholar
  29. 29.
    Feinberg M., Horn F.: Arch. Ration. Mech. Anal. 66, 83 (1977)CrossRefGoogle Scholar
  30. 30.
    Erdi P., Toth J.: Mathematical Models of Chemical Reactions. Princeton University Press, Princeton (1989)Google Scholar
  31. 31.
    Szederkényi G.: J. Math. Chem. 45, 1172 (2009)CrossRefGoogle Scholar
  32. 32.
    Hill A.V: J. Physiol 40(4), 389 (2010)Google Scholar
  33. 33.
    Angeli D., Leenheer P., Sontag E.: Math. Biosci. 210(2), 598 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Applied MathematicsUniversity of WaterlooWaterlooCanada

Personalised recommendations