Advertisement

Journal of Mathematical Chemistry

, Volume 50, Issue 3, pp 620–635 | Cite as

Single switch surface hopping for molecular quantum dynamics

  • Clotilde Fermanian-Kammerer
  • Caroline Lasser
Original Paper

Abstract

The aim of this text is to present a surface hopping approximation for molecular quantum dynamics obeying a Schrödinger equation with crossing eigenvalue surfaces. After motivating Schrödinger equations with matrix valued potentials, we describe the single switch algorithm and present some numerical results. Then we discuss the algorithm’s mathematical justification and describe extensions to more general situations, where three eigenvalue surfaces intersect or the eigenvalues are of multiplicity two. We emphasize the generality of this surface hopping approximation for non-adiabatic transitions.

Keywords

Molecular dynamics Conical intersections Surface hopping 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brundobler S., Elser V.: S-matrix for generalized Landau-Zener problem. J. Phys. A 26, 1211–1227 (1993)CrossRefGoogle Scholar
  2. 2.
    Y. Colin de Verdière, in The level crossing problem in semi-classical analysis I. The symmetric case Proceedings of Frédéric Pham’s congress, Annales de l’Institut Fourier, 53 1023–1054 (2003)Google Scholar
  3. 3.
    Duyckaerts T., Fermanian Kammerer C., Jecko T.: Degenerated codimension 1 crossings and resolvent estimates. Asymptot. Anal. 65, 147–174 (2009)Google Scholar
  4. 4.
    C. Fermanian Kammerer, Normal forms for conical intersections in quantum chemistry. Math. Phys. Elect. Jour. 13(4) (2007)Google Scholar
  5. 5.
    Fermanian Kammerer C., Gérard P.: Mesures semi-classiques et croisements de modes. Bull. Soc. Math. Fr. 130(1), 123–168 (2002)Google Scholar
  6. 6.
    Fermanian Kammerer C., Gérard P.: A Landau-Zener formula for non-degenerated involutive codimension 3 crossings. Ann. Henri Poincaré 4(3), 513–552 (2003)CrossRefGoogle Scholar
  7. 7.
    Fermanian Kammerer C., Lasser C.: Propagation through generic level crossings: a surface hopping semigroup. SIAM J. Math. Anal. 140(1), 103–133 (2008)CrossRefGoogle Scholar
  8. 8.
    C. Fermanian Kammerer, C. Lasser, Molecular propagation through avoided crossings (in preparation)Google Scholar
  9. 9.
    C. Fermanian Kammerer, V.Rousse, Semi-classical analysis of a conjoint crossing of three symmetric modes. (Preprint:http://arxiv.org/abs/0904.0211) Methods and Appl. Anal.
  10. 10.
    G.A. Hagedorn, Molecular Propagation Through Electron Energy Level Crossings. Memoirs Series of the AMS, vol. 111, no. 536 (1994)Google Scholar
  11. 11.
    Hagedorn G.A., Joye A.: Landau-Zener transitions through small electronic eigenvalue gaps in the Born-Oppenheimer approximation. Ann. Inst. Henri Poincaré 68(1), 85–134 (1998)Google Scholar
  12. 12.
    Hagedorn G.A., Joye A.: Molecular propagation through small avoided crossings of electron energy levels. Rev. Math. Phys. 1(1), 41–101 (1999)Google Scholar
  13. 13.
    T. Jecko, Non-trapping condition for semiclassical Schrödinger operators with matrix-valued potentials. Math. Phys. Electron. Jour. 11(2) (2005), Erratum: Math. Phys. Electron. Jour. 13(3) (2007)Google Scholar
  14. 14.
    Kube S., Lasser C., Weber M.: Monte Carlo sampling of Wigner functions and surface hopping quantum dynamics. J. Comput. Phys. 228, 1947–1962 (2009)CrossRefGoogle Scholar
  15. 15.
    Landau L.: Collected Papers of L. Landau. Pergamon Press, Oxford (1965)Google Scholar
  16. 16.
    Lasser C., Swart T.: Single switch surface hopping for a model of pyrazine. J. Chem. Phys 129, 034302 (2008)CrossRefGoogle Scholar
  17. 17.
    Lasser C., Teufel S.: Propagation through conical crossings: an asymptotic semigroup. Comm. Pure Appl. Math. 58(9), 1188–1230 (2005)CrossRefGoogle Scholar
  18. 18.
    Martinez A., Sordoni V.: Twisted pseudodifferential calculus and application to the quantum evolution of molecules. Mem. Am. Mathe. Soc. 200, 1–82 (2009)Google Scholar
  19. 19.
    Spohn H., Teufel S.: Adiabatic decoupling and time-dependent Born-Oppenheimer theory. Commun. Math. Phys. 224, 113–132 (2001)CrossRefGoogle Scholar
  20. 20.
    Tully J., Preston R.: Trajectory surface hopping approach to nonadiabatic molecular collisions: the reaction of H + with D 2. J. Chem. Phys. 55(2), 562–572 (1971)CrossRefGoogle Scholar
  21. 21.
    Tully J.: Molecular dynamics with electronic transitions. J. Chem. Phys. 93(2), 1061–1071 (1994)CrossRefGoogle Scholar
  22. 22.
    Voronin A., Marques J., Varandas A.: J. Phys. Chem. A 102(30), 6057–6062 (1998)CrossRefGoogle Scholar
  23. 23.
    Zener C.: Non-adiabatic crossing of energy levels. Proc. Roy. Soc. Lond. 137, 696–702 (1932)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.LAMA UMR CNRS 8050Université Paris ESTCréteil CedexFrance
  2. 2.Technische Universität MünchenGarchingGermany

Personalised recommendations