Journal of Mathematical Chemistry

, Volume 49, Issue 2, pp 562–575 | Cite as

Entropic bond descriptors from separated output-reduced communication channels in atomic orbital resolution

  • Dariusz Szczepanik
  • Janusz Mrozek
Open Access
Original Paper


Communication Theory of Chemical Bond (CTCB) in atomic orbital resolution is used to define entropic bond orders of diatomic molecular fragments. Partial communication channels for separated information flows from atomic centers and two alternative output-reducion schemes with their entropic descriptors are proposed. Also two types of information that can be transmitted through communication system are identified: information about molecular electron occupations and information about bonding shares of atomic orbitals. The former is used to evaluate an average number of electrons engaged in bond forming process while the latter provides information about electron localization in chemical bond. Calculated entropic bond orders and their IT-covalency and IT-ionicity components are in good agreement with both chemical intuition and MO theory predictions.


Bond order Communication channel Information scattering Covalency Ionicity 


Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.


  1. 1.
    Nalewajski R.F.: Information Theory of Molecular Systems. Elsevier, Amsterdam (2006)Google Scholar
  2. 2.
    Nalewajski R.F.: Information Origins of the Chemical Bond. Nova Sc., Hauppauge (2010)Google Scholar
  3. 3.
    Shannon C.E.: Bell Syst. Tech. J. 27, 379 (1948) 623Google Scholar
  4. 4.
    Nalewajski R.F.: J. Math. Chem. 43, 265 (2008)CrossRefGoogle Scholar
  5. 5.
    Nalewajski R.F.: Mol. Phys. 104, 3339 (2006)CrossRefGoogle Scholar
  6. 6.
    Nalewajski R.F.: Int. J. Quantum Chem. 109, 425 (2009) 2495CrossRefGoogle Scholar
  7. 7.
    Nalewajski R.F.: Mol. Phys. 103, 451 (2005)CrossRefGoogle Scholar
  8. 8.
    Nalewajski R.F.: J. Math. Chem. 38, 43 (2005)CrossRefGoogle Scholar
  9. 9.
    Nalewajski R.F.: Theor. Chem. Acc. 114, 4 (2005)CrossRefGoogle Scholar
  10. 10.
    R.F. Nalewajski, D. Szczepanik, J. Mrozek, Adv. Quantum Chem. 61, in pressGoogle Scholar
  11. 11.
    Wiberg K.A.: Tetrahedron 24, 1083 (1968)CrossRefGoogle Scholar
  12. 12.
    Abramson N.: Information Theory and Coding. McGraw-Hill, New York (1963)Google Scholar
  13. 13.
    Nalewajski R.F., Mrozek J.: J. Quantum Chem. 51, 187 (1994)CrossRefGoogle Scholar
  14. 14.
    Nalewajski R.F., Mrozek J., Mazur G.: Can. J. Chem. 100, 1121 (1996)CrossRefGoogle Scholar
  15. 15.
    Mohajeri A., Dasmeh P.: Int. J. Mod. Phys. C 18, 1795 (2007)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  1. 1.Department of Computational Methods in ChemistryJagiellonian UniversityCracowPoland

Personalised recommendations