Journal of Mathematical Chemistry

, Volume 49, Issue 1, pp 95–162 | Cite as

Theory of organic stereoisomerism in harmony with molecular symmetry

  • Shinsaku FujitaEmail author
Original Paper


A new theory of stereoisomerism in harmony with molecular symmetry has been developed by starting from RS-stereoisomeric groups correlated to stereoisograms and their correlation diagrams. The substitution positions of a stereoskeleton are permuted by a set of epimerizations at the RS-stereogenic centers of the stereoskeleton. The product of epimerizations and the mirror-image transformation of the skeleton characterize the total feature of isomerization, which is based on the axiom of organic stereoisomerism. Then, stereoisomeric groups are formulated to develop the theory of stereoisomerism after several related groups are defined, e.g., stereoisogram groups, epimerization groups, local symmetry groups, epimeric stereoisogram groups, epimeric RS-stereoisomeric groups, and multiple epimerization groups. On the basis of the stereoisomeric groups, stereoisomeric representations are derived and employed to discuss correlation diagrams of stereoisograms. On the other hand, molecular-symmetry representations are derived from the stereoisomeric groups and employed to discuss molecular symmetries. Typical topics of stereochemistry, e.g., the CIP system for giving RS-stereodescriptors and the Fischer-Rosanoff convention for naming dl-series of sugars, are discussed on the basis of the present theory.


Stereoisomerism Stereochemistry Enantiomerism RS-diastereomerics RS-stereoisomeric Stereoisogram Correlation diagram RS-stereodescriptors Molecular symmetry Cyclobutane 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    van’t Hoff J.H.: Arch. Néerl. Sci. Exactes Nat. 9, 445–454 (1874)Google Scholar
  2. 2.
    Le Bel J.A.: Bull. Soc. Chim. Fr. 22(2), 337–347 (1874)Google Scholar
  3. 3.
    Fischer E.: Ber. Dtsch. Chem. Ges. 24, 1836–1845 (1891)CrossRefGoogle Scholar
  4. 4.
    Fischer E.: Ber. Dtsch. Chem. Ges. 24, 2683–2687 (1891)CrossRefGoogle Scholar
  5. 5.
    IUPAC Organic Chemistry Division: Pure Appl. Chem. 68, 2193–2222 (1996)CrossRefGoogle Scholar
  6. 6.
    Cahn R.S., Ingold C.K., Prelog V.: Angew. Chem. Int. Ed. Eng. 5, 385–415 (1966)CrossRefGoogle Scholar
  7. 7.
    Prelog V., Helmchen G.: Helv. Chim. Acta 55, 2581–2598 (1972)CrossRefGoogle Scholar
  8. 8.
    Prelog V., Helmchen G.: Angew. Chem. Int. Ed. Eng. 21, 567–583 (1982)CrossRefGoogle Scholar
  9. 9.
    Mislow K., Siegel J.: J. Am. Chem. Soc. 106, 3319–3328 (1984)CrossRefGoogle Scholar
  10. 10.
    Helmchen G.: A General Aspects. 1. Nomenclature and Vocabulary of Organic Stereochemistry. In: Helmchen, G., Hoffmann, R.W., Mulzer, J., Schaumann, E. (eds) Stereoselective Synthesis. Methods of Organic Chemistry (Houben-Weyl) Workbench Edition E21, vol. 1, 4th edn., pp. 1–74. Georg Thieme, Stuttgart, New York (1996)Google Scholar
  11. 11.
    IUPAC Chemical Nomenclature and Structure Representation Division, Provisional Recommendations. Nomenclature of Organic Chemistry,
  12. 12.
    Fujita S.: J. Am. Chem. Soc. 112, 3390–3397 (1990)CrossRefGoogle Scholar
  13. 13.
    Fujita S.: Symmetry and Combinatorial Enumeration in Chemistry. Springer-Verlag, Berlin-Heidelberg (1991)Google Scholar
  14. 14.
    Fujita S.: Theor. Chim. Acta 76, 247–268 (1989)CrossRefGoogle Scholar
  15. 15.
    Fujita S.: J. Math. Chem. 5, 99–120 (1990)CrossRefGoogle Scholar
  16. 16.
    Fujita S.: J. Org. Chem. 69, 3158–3165 (2004)CrossRefGoogle Scholar
  17. 17.
    Fujita S.: J. Math. Chem. 35, 265–287 (2004)CrossRefGoogle Scholar
  18. 18.
    Fujita S.: Match Commun. Math. Comput. Chem. 54, 39–52 (2005)Google Scholar
  19. 19.
    S. Fujita, J. Math. Chem. (2009)
  20. 20.
    Fujita S.: Tetrahedron 47, 31–46 (1991)CrossRefGoogle Scholar
  21. 21.
    Fujita S.: Tetrahedron 65, 1581–1592 (2009)CrossRefGoogle Scholar
  22. 22.
    Fujita S.: J. Comput. Aided Chem. 10, 16–29 (2009)CrossRefGoogle Scholar
  23. 23.
    Fujita S.: Diagrammatical Approach to Molecular Symmetry and Enumeration of Stereoisomers. University of Kragujevac, Faculty of Science, Kragujevac (2007)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Shonan Institute of Chemoinformatics and Mathematical ChemistryOoimachi, Ashigara-Kami-GunJapan

Personalised recommendations