Advertisement

Journal of Mathematical Chemistry

, Volume 48, Issue 4, pp 1092–1143 | Cite as

Mulitstep methods with vanished phase-lag and its first and second derivatives for the numerical integration of the Schrödinger equation

  • Ibraheem Alolyan
  • T. E. SimosEmail author
Original Paper

Abstract

A tenth algebraic order eight-step method is developed in this paper. For this method  we require the phase-lag and its first and second derivatives to be vanished. A comparative error analysis and a comparative stability analysis are also presented in this paper. The new proposed method is applied for the numerical solution of the one-dimensional Schrödinger equation. The efficiency of the new methodology is proved via the theoretical analysis and the numerical applications. General conclusions about the importance of several properties on the construction of numerical algorithms for the approximate solution of the radial Schrödinger equation are also presented.

Keywords

Numerical solution Schrödinger equation Multistep methods Hybrid methods Interval of periodicity P-stability Phase-lag Phase-fitted 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ixaru L.G., Micu M.: Topics in Theoretical Physics. Central Institute of Physics, Bucharest (1978)Google Scholar
  2. 2.
    Landau L.D., Lifshitz F.M.: Quantum Mechanics. Pergamon, New York (1965)Google Scholar
  3. 3.
    Prigogine, I., Rice, S. (eds): Advances in Chemical Physics vol. 93: New Methods in Computational Quantum Mechanics. John Wiley & Sons, New York (1997)Google Scholar
  4. 4.
    Herzberg G.: Spectra of Diatomic Molecules. Van Nostrand, Toronto (1950)Google Scholar
  5. 5.
    T.E. Simos, Atomic structure computations in chemical modelling: applications and theory (Editor: A. Hinchliffe, UMIST). R. Soc. Chem. 38–142 (2000)Google Scholar
  6. 6.
    Simos T.E.: Numerical methods for 1D, 2D and 3D differential equations arising in chemical problems, chemical modelling: application and theory. R. Soc. Chem. 2, 170–270 (2002)Google Scholar
  7. 7.
    T.E. Simos, Numerical Solution of Ordinary Differential Equations with Periodical Solution. Doctoral Dissertation, National Technical University of Athens, Greece, 1990 (in Greek)Google Scholar
  8. 8.
    Dormand J.R., El-Mikkawy M.E.A., Prince P.J.: Families of Runge-Kutta-Nyström formulae. IMA J. Numer. Anal. 7, 235–250 (1987)CrossRefGoogle Scholar
  9. 9.
    Dormand J.R., Prince P.J.: A family of embedded RungeKutta formulae. J. Comput. Appl. Math. 6, 1926 (1980)CrossRefGoogle Scholar
  10. 10.
    Sideridis A.B., Simos T.E.: A low-order embedded Runge-Kutta method for periodic initial-value problems. J. Comput. Appl. Math. 44(2), 235–244 (1992)CrossRefGoogle Scholar
  11. 11.
    Simos T.E.: A Runge-Kutta Fehlberg method with phase-lag of order infinity for initial value problems with oscillating solution. Comput. Math. Appl. 25, 95–101 (1993)CrossRefGoogle Scholar
  12. 12.
    Simos T.E.: Runge-Kutta interpolants with minimal phase-lag. Comput. Math. Appl. 26, 43–49 (1993)CrossRefGoogle Scholar
  13. 13.
    Simos T.E.: Runge-Kutta-Nyström interpolants for the numerical integration of special second-order periodic initial-value problems. Comput. Math. Appl. 26, 7–15 (1993)CrossRefGoogle Scholar
  14. 14.
    Simos T.E.: A high-order predictor-corrector method for periodic IVPs. Appl. Math. Lett. 6(5), 9–12 (1993)CrossRefGoogle Scholar
  15. 15.
    Simos T.E., Dimas E., Sideridis A.B.: A Runge-Kutta-Nyström method for the numerical-integration of special 2nd-order periodic initial-value problems. J. Comput. Appl. Math. 51(3), 317–326 (1994)CrossRefGoogle Scholar
  16. 16.
    Simos T.E.: An explicit high-order predictor-corrector method for periodic initial-value problems. Math. Models Methods Appl. Sci. 5(2), 159–166 (1995)CrossRefGoogle Scholar
  17. 17.
    Avdelas G., Simos T.E.: Block Runge-Kutta methods for periodic initial-value problems. Comput. Math. Appl. 31, 69–83 (1996)CrossRefGoogle Scholar
  18. 18.
    Avdelas G., Simos T.E.: Embedded methods for the numerical solution of the Schrödinger equation. Comput. Math. Appl. 31, 85–102 (1996)CrossRefGoogle Scholar
  19. 19.
    Simos T.E.: A modified Runge-Kutta method for the numerical solution of ODE’s with oscillation solutions. Appl. Math. Lett. 9(6), 61–66 (1996)CrossRefGoogle Scholar
  20. 20.
    Simos T.E.: Some embedded modified Runge-Kutta methods for the numerical solution of some specific Schrödinger equations. J. Math. Chem. 24(1–3), 23–37 (1998)CrossRefGoogle Scholar
  21. 21.
    Simos T.E.: An embedded Runge-Kutta method with phase-lag of order infinity for the numerical solution of the of Schrödinger equation. Int. J. Mod. Phys. C 11, 1115–1133 (2000)CrossRefGoogle Scholar
  22. 22.
    Simos T.E., Vigo-Aguiar J.: A new modified Runge-Kutta-Nyström method with phase-lag of order infinity for the numerical solution of the Schrödinger equation and related problems. Int. J. Mod. Phys. C 11, 1195–1208 (2000)CrossRefGoogle Scholar
  23. 23.
    Simos T.E., Vigo-Aguiar J.: A modified Runge-Kutta method with phase-lag of order infinity for the numerical solution of the of Schrödinger equation and related problems. Comput. Chem. 25, 275–281 (2001)CrossRefGoogle Scholar
  24. 24.
    Simos T.E., Vigo-Aguiar J.: A modified phase-fitted Runge-Kutta method for the numerical solution of the Schrödinger equation. J. Math. Chem. 30(1), 121–131 (2001)CrossRefGoogle Scholar
  25. 25.
    Simos T.E., Williams P.S.: A New Runge-Kutta-Nyström method with phase-lag of order infinity for the numerical solution of the Schrödinger equation. MATCH Commun. Math. Comput. Chem. 45, 123–137 (2002)Google Scholar
  26. 26.
    Tsitouras C., Simos T.E.: Optimized Runge-Kutta pairs for problems with oscillating solutions. J. Comput. Appl. Math. 147(2), 397–409 (2002)CrossRefGoogle Scholar
  27. 27.
    Anastassi Z.A., Simos T.E.: Special optimized Runge-Kutta methods for IVPs with oscillating solutions. Int. J. Mod. Phys. C 15, 1–15 (2004)CrossRefGoogle Scholar
  28. 28.
    Anastassi Z.A., Simos T.E.: A dispersive-fitted and dissipative-fitted explicit Runge-Kutta method for the numerical solution of orbital problems. New Astron. 10, 31–37 (2004)CrossRefGoogle Scholar
  29. 29.
    Tselios K., Simos T.E.: Runge-Kutta methods with minimal dispersion and dissipation for problems arising from computational acoustics. J. Comput. Appl. Math. 175(1), 173–181 (2005)CrossRefGoogle Scholar
  30. 30.
    Anastassi Z.A., Simos T.E.: An optimized Runge-Kutta method for the solution of orbital problems. J. Comput. Appl. Math. 175(1), 1–9 (2005)CrossRefGoogle Scholar
  31. 31.
    Triantafyllidis T.V., Anastassi Z.A., Simos T.E.: Two optimized Runge-Kutta methods for the solution of the Schrödinger equation. MATCH Commun. Math. Comput. Chem. 60(3), 753–771 (2008)Google Scholar
  32. 32.
    Papadopoulos D.F., Anastassi Z.A., Simos T.E.: A phase-fitted Runge-Kutta-Nystrom method for the numerical solution of initial value problems with oscillating solutions. Comput. Phys. Commun. 180(10), 1839–1846 (2009)CrossRefGoogle Scholar
  33. 33.
    Kosti A.A., Anastassi Z.A., Simos T.E.: An optimized explicit Runge-Kutta method with increased phase-lag order for the numerical solution of the Schrödinger equation and related problems. J. Math. Chem. 47(1), 315–330 (2010)CrossRefGoogle Scholar
  34. 34.
    Kalogiratou Z., Simos T.E.: Construction of trigonometrically and exponentially fitted Runge-Kutta-Nyström methods for the numerical solution of the Schrödinger equation and related problems a method of 8th algebraic order. J. Math. Chem. 31(2), 211–232 (2002)CrossRefGoogle Scholar
  35. 35.
    Anastassi Z.A., Simos T.E.: Trigonometrically fitted Runge-Kutta methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 37(3), 281–293 (2005)CrossRefGoogle Scholar
  36. 36.
    Anastassi Z.A., Simos T.E.: A family of exponentially-fitted Runge-Kutta methods with exponential order up to three for the numerical solution of the Schrödinger equation. J. Math. Chem. 41(1), 79–100 (2007)CrossRefGoogle Scholar
  37. 37.
    Lambert J.D., Watson I.A.: Symmetric multistep methods for periodic initial values problems. J. Inst. Math. Appl. 18, 189–202 (1976)CrossRefGoogle Scholar
  38. 38.
    Raptis A.D., Allison A.C.: Exponential—fitting methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 14, 1–5 (1978)CrossRefGoogle Scholar
  39. 39.
    Raptis A.D.: Exponentially-fitted solutions of the eigenvalue Shrödinger equation with automatic error control. Comput. Phys. Commun. 28, 427–431 (1983)CrossRefGoogle Scholar
  40. 40.
    Kalogiratou Z., Simos T.E.: A P-stable exponentially-fitted method for the numerical integration of the Schrödinger equation. Appl. Math. Comput. 112, 99–112 (2000)CrossRefGoogle Scholar
  41. 41.
    Raptis A.D., Simos T.E.: A four-step phase-fitted method for the numerical integration of second order initial-value problem. BIT 31, 160–168 (1991)CrossRefGoogle Scholar
  42. 42.
    Simos T.E., Raptis A.D.: Numerov-type methods with minimal phase-lag for the numerical integration of the one-dimensional Schrödinger equation. Computing 45, 175–181 (1990)CrossRefGoogle Scholar
  43. 43.
    Simos T.E.: A two-step method with phase-lag of order infinity for the numerical integration of second order periodic initial-value problems. Int. J. Comput. Math. 39, 135–140 (1991)CrossRefGoogle Scholar
  44. 44.
    Simos T.E.: A Numerov-type method for the numerical-solution of the radial Schrödinger-equation. Appl. Numer. Math. 7(2), 201–206 (1991)CrossRefGoogle Scholar
  45. 45.
    Simos T.E.: Explicit two-step methods with minimal phase-lag for the numerical-integration of special second-order initial-value problems and their application to the one-dimensional Schrödinger-equation. J. Comput. Appl. Math. 39(1), 89–94 (1992)CrossRefGoogle Scholar
  46. 46.
    Simos T.E.: Two-step almost P-stable complete in phase methods for the numerical integration of second order periodic initial-value problems. Inter. J. Comput. Math. 46, 77–85 (1992)CrossRefGoogle Scholar
  47. 47.
    Simos T.E.: An explicit almost P-stable two-step method with phase-lag of order infinity for the numerical integration of second order periodic initial-value problems. Appl. Math. Comput. 49, 261–268 (1992)CrossRefGoogle Scholar
  48. 48.
    Simos T.E.: High—order methods with minimal phase-lag for the numerical integration of the special second order initial value problem and their application to the one-dimensional Schrödinger equation. Comput. Phys. Commun. 74, 63–66 (1993)CrossRefGoogle Scholar
  49. 49.
    Simos T.E.: A new variable-step method for the numerical-integration of special 2Nd-order initial-value problems and their application to the one-dimensional SchrÖdinger-equation. Appl. Math. Lett. 6(3), 67–73 (1993)CrossRefGoogle Scholar
  50. 50.
    Simos T.E.: A family of two-step almost P-stable methods with phase-lag of order infinity for the numerical integration of second order periodic initial-value problems. Jpn. J. Ind. Appl. Math. 10, 289–297 (1993)CrossRefGoogle Scholar
  51. 51.
    Simos T.E.: A predictor-corrector phase-fitted method for y′′ = f(x,y). Math. Comput. Simul. 35, 153–159 (1993)CrossRefGoogle Scholar
  52. 52.
    Simos T.E.: A P-stable complete in phase Obrechkoff trigonometric fitted method for periodic initial value problems. Proc. R. Soc. Lond. A 441, 283–289 (1993)CrossRefGoogle Scholar
  53. 53.
    Simos T.E.: An explicit 4-step phase-fitted method for the numerical-integration of 2nd-order initial-value problems. J. Comput. Appl. Math. 55(2), 125–133 (1994)CrossRefGoogle Scholar
  54. 54.
    Simos T.E.: Some new variable-step methods with minimal phase-lag for the numerical integration of special 2nd-order initial value problems. Appl. Math. Comput. 64, 65–72 (1994)CrossRefGoogle Scholar
  55. 55.
    Simos T.E., Mousadis G.: Some new Numerov-type methods with minimal phase-lag for the numerical integration of the radial Schrödinger equation. Mol. Phys. 83, 1145–1153 (1994)CrossRefGoogle Scholar
  56. 56.
    Simos T.E., Mousadis G.: A two-step method for the numerical solution of the radial Schrdinger equation. Comput. Math. Appl. 29, 31–37 (1995)CrossRefGoogle Scholar
  57. 57.
    Simos T.E.: Predictor corrector phase-fitted methods for Y′′ = F(X,Y) and an application to the Schrödinger-equation. Int. J. Quantum Chem. 53(5), 473–483 (1995)CrossRefGoogle Scholar
  58. 58.
    Simos T.E.: Some low-order two-step almost P-stable methods with phase-lag of order infinity for the numerical integration of the radial Schrödinger equation. Int. J. Modern Phys. A 10, 2431–2438 (1995)CrossRefGoogle Scholar
  59. 59.
    Simos T.E.: A new Numerov-type method for computing eigenvalues and resonances of the radial Schrödinger equation. Int. J. Modern Phys. C-Phys. Comput. 7(1), 33–41 (1996)CrossRefGoogle Scholar
  60. 60.
    Papakaliatakis G., Simos T.E.: A new method for the numerical solution of fourth order BVPs with oscillating solutions. Comput. Math. Appl. 32, 1–6 (1996)CrossRefGoogle Scholar
  61. 61.
    Simos T.E.: Accurate computations for the elastic scattering phase-shift problem. Comput. Chem. 21, 125–128 (1996)CrossRefGoogle Scholar
  62. 62.
    Simos T.E.: An eighth order method with minimal phase-lag for accuarate computations for the elastic scattering phase-shift problem. Inter. J. Modern Phys. C 7, 825–835 (1996)CrossRefGoogle Scholar
  63. 63.
    Simos T.E.: Eighth order methods with minimal phase-lag for accurate computations for the elastic scattering phase-shift problem. J. Math. Chem. 21(4), 359–372 (1997)CrossRefGoogle Scholar
  64. 64.
    Simos T.E.: An extended Numerov-type method for the numerical solution of the Schrödinger equation. Comput. Math. Appl. 33, 67–78 (1997)CrossRefGoogle Scholar
  65. 65.
    Simos T.E.: New Numerov-type methods for computing eigenvalues, resonances and phase shifts of the radial Schrödinger equation. Int. J. Quantum Chem. 62, 467–475 (1997)CrossRefGoogle Scholar
  66. 66.
    Simos T.E.: New P-stable high-order methods with minimal phase-lag for the numerical integration of the radial Schrödinger equation. Phys. Scr. 55, 644–650 (1997)CrossRefGoogle Scholar
  67. 67.
    Simos T.E.: Eighth order methods for elastic scattering phase-shifts. Int. J. Theor. Phys. 36, 663–672 (1997)CrossRefGoogle Scholar
  68. 68.
    Simos T.E., Tougelidis G.: An explicit eighth order method with minimal phase-lag for the numerical solution of the Schrödinger equation. Comput. Mater. Sci. 8, 317–326 (1997)CrossRefGoogle Scholar
  69. 69.
    Simos T.E., Tougelidis G.: An explicit eighth order method with minimal phase-lag for accurate computations of eigenvalues, resonances and phase shifts. Comput. Chem. 21, 327–334 (1997)CrossRefGoogle Scholar
  70. 70.
    Simos T.E.: Eighth order method for accurate computations for the elastic scattering phase-shift problem. Int. J. Quantum Chem. 68, 191–200 (1998)CrossRefGoogle Scholar
  71. 71.
    Simos T.E.: New embedded explicit methods with minimal phase-lag for the numerical integration of the Schrödinger equation. Comput. Chem. 22, 433–440 (1998)CrossRefGoogle Scholar
  72. 72.
    Simos T.E.: High-algebraic, high-phase-lag methods for accurate computations for the elastic-scattering phase shift problem. Can. J. Phys. 76, 473–493 (1998)CrossRefGoogle Scholar
  73. 73.
    Simos T.E.: High algebraic order methods with minimal phase-lag for accurate solution of the Schrödinger equation. Int. J. Modern Phys. C 9, 1055–1071 (1998)CrossRefGoogle Scholar
  74. 74.
    Avdelas G., Simos T.E.: Embedded eighth order methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 26(4), 327–341 (1999)CrossRefGoogle Scholar
  75. 75.
    Simos T.E.: A new finite difference scheme with minimal phase-lag for the numerical solution of the Schrödinger equation. Appl. Math. Comput. 106, 245–264 (1999)CrossRefGoogle Scholar
  76. 76.
    Simos T.E.: High algebraic order explicit methods with reduced phase-lag for an efficient solution of the Schrödinger equation. Int. J. Quantum Chem. 73, 479–496 (1999)CrossRefGoogle Scholar
  77. 77.
    Simos T.E.: Dissipative high phase-lag order Numerov-type methods for the numerical solution of the Schrödinger equation. Comput. Chem. 23, 439–446 (1999)CrossRefGoogle Scholar
  78. 78.
    Simos T.E.: Explicit eighth order methods for the numerical integration of initial-value problems with periodic or oscillating solutions. Comput. Phys. Commun. 119, 32–44 (1999)CrossRefGoogle Scholar
  79. 79.
    Simos T.E.: High algebraic order methods for the numerical solution of the Schrödinger equation. Mol. Simul. 22, 303–349 (1999)CrossRefGoogle Scholar
  80. 80.
    Avdelas G., Konguetsof A., Simos T.E.: A family of hybrid eighth order methods with minimal phase-lag for the numerical solution of the Schrödinger equation and related problems. Int. J. Modern Phys. C 11, 415–437 (2000)Google Scholar
  81. 81.
    Avdelas G., Simos T.E.: Dissipative high phase-lag order Numerov-type methods for the numerical solution of the Schrödinger equation. Phys. Rev. E 62, 1375–1381 (2000)CrossRefGoogle Scholar
  82. 82.
    Avdelas G., Simos T.E.: On variable-step methods for the numerical solution of Schrödinger equation and related problems. Comput. Chem. 25, 3–13 (2001)CrossRefGoogle Scholar
  83. 83.
    Simos T.E., Williams P.S.: New insights in the development of Numerov-type methods with minimal phase-lag for the numerical solution of the Schrödinger equation. Comput. Chem. 25, 77–82 (2001)CrossRefGoogle Scholar
  84. 84.
    Avdelas G., Konguetsof A., Simos T.E.: A generator of hybrid explicit methods for the numerical solution of the Schrödinger equation and related problems. Comput. Phys. Commun. 136, 14–28 (2001)CrossRefGoogle Scholar
  85. 85.
    Simos T.E., Vigo-Aguiar J.: A symmetric high-order method with minimal phase-lag for the numerical solution of the Schrödinger equation. Int. J. Modern Phys. C 12, 1035–1042 (2001)CrossRefGoogle Scholar
  86. 86.
    Simos T.E., Vigo-Aguiar J.: On the construction of efficient methods for second order IVPs with oscillating solution. Int. J. Modern Phys. C 12, 1453–1476 (2001)CrossRefGoogle Scholar
  87. 87.
    Avdelas G., Konguetsof A., Simos T.E.: A generator and an optimized generator of high-order hybrid explicit methods for the numerical solution of the Schrödinger equation. Part 1. Development of the basic method. J. Math. Chem. 29(4), 281–291 (2001)CrossRefGoogle Scholar
  88. 88.
    Avdelas G., Konguetsof A., Simos T.E.: A generator and an optimized generator of high-order hybrid explicit methods for the numerical solution of the Schrödinger equation. Part 2. Development of the generator; optimization of the generator and numerical results. J. Math. Chem. 29(4), 293–305 (2001)CrossRefGoogle Scholar
  89. 89.
    Tsitouras Ch., Simos T.E.: High algebraic, high phase-lag order embedded Numerov-type methods for oscillatory problems. Appl. Math. Comput. 131, 201–211 (2002)CrossRefGoogle Scholar
  90. 90.
    Avdelas G., Konguetsof A., Simos T.E.: A generator of dissipative methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 148, 59–73 (2002)CrossRefGoogle Scholar
  91. 91.
    Konguetsof A., Simos T.E.: P-stable eighth algebraic order methods for the numerical solution of the Schrödinger equation. Comput. Chem. 26, 105–111 (2002)CrossRefGoogle Scholar
  92. 92.
    Simos T.E., Vigo-Aguiar J.: Symmetric eighth algebraic order methods with minimal phase-lag for the numerical solution of the Schrödinger equation. J. Math. Chem. 31(2), 135–144 (2002)CrossRefGoogle Scholar
  93. 93.
    Konguetsof A., Simos T.E.: A generator of hybrid symmetric four-step methods for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 158(1), 93–106 (2003)CrossRefGoogle Scholar
  94. 94.
    Simos T.E., Famelis I.T., Tsitouras Ch.: Zero dissipative, explicit Numerov-type methods for second order IVPs with oscillating solutions. Numer. Algorithms 34(1), 27–40 (2003)CrossRefGoogle Scholar
  95. 95.
    Sakas D.P., Simos T.E.: Multiderivative methods of eighth algrebraic order with minimal phase-lag for the numerical solution of the radial Schrödinger equation. J. Comput. Appl. Math. 175(1), 161–172 (2005)CrossRefGoogle Scholar
  96. 96.
    Sakas D.P., Simos T.E.: A family of multiderivative methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 37(3), 317–331 (2005)CrossRefGoogle Scholar
  97. 97.
    Panopoulos G.A., Anastassi Z.A., Simos T.E.: Two new optimized eight-step symmetric methods for the efficient solution of the Schrödinger equation and related problems. MATCH Commun. Math. Comput. Chem. 60(3), 773–785 (2008)Google Scholar
  98. 98.
    Simos T.E.: A new Numerov-type method for the numerical solution of the Schrödinger equation. J. Math. Chem. 46(3), 981–1007 (2009)CrossRefGoogle Scholar
  99. 99.
    Simos T.E.: A family of 4-step exponentially fitted predictor-corrector methods for the numerical-integration of the Schrödinger-equation. J. Comput. Appl. Math. 58(3), 337–344 (1995)CrossRefGoogle Scholar
  100. 100.
    Thomas R.M., Simos T.E., Mitsou G.V.: A family of Numerov-type exponentially fitted predictor-corrector methods for the numerical integration of the radial Schrödinger equation. J. Comput. Appl. Math. 67(2), 255–270 (1996)CrossRefGoogle Scholar
  101. 101.
    Thomas R.M., Simos T.E.: A family of hybrid exponentially fitted predictor-corrector methods for the numerical integration of the radial Schrödinger equation. J. Comput. Appl. Math. 87(2), 215–226 (1997)CrossRefGoogle Scholar
  102. 102.
    Psihoyios G., Simos T.E.: Trigonometrically fitted predictor-corrector methods for IVPs with oscillating solutions. J. Comput. Appl. Math. 158(1), 135–144 (2003)CrossRefGoogle Scholar
  103. 103.
    Konguetsof A.: A new two-step hybrid method for the numerical solution of the Schrödinger equation. J. Math. Chem. 47(2), 871–890 (2010)CrossRefGoogle Scholar
  104. 104.
    Tselios K., Simos T.E.: Symplectic methods for the numerical solution of the radial Shrödinger equation. J. Math. Chem. 34(1–2), 83–94 (2003)CrossRefGoogle Scholar
  105. 105.
    Tselios K., Simos T.E.: Symplectic methods of fifth order for the numerical solution of the radial Shrodinger equation. J. Math. Chem. 35(1), 55–63 (2004)CrossRefGoogle Scholar
  106. 106.
    Monovasilis T., Simos T.E.: New second-order exponentially and trigonometrically fitted symplectic integrators for the numerical solution of the time-independent Schrödinger equation. J. Math. Chem. 42(3), 535–545 (2007)CrossRefGoogle Scholar
  107. 107.
    Monovasilis T., Kalogiratou Z., Simos T.E.: Exponentially fitted symplectic methods for the numerical integration of the Schrödinger equation. J. Math. Chem. 37(3), 263–270 (2005)CrossRefGoogle Scholar
  108. 108.
    Monovasilis T., Kalogiratou Z., Simos T.E.: Trigonometrically fitted and exponentially fitted symplectic methods for the numerical integration of the Schrödinger equation. J. Math. Chem. 40(3), 257–267 (2006)CrossRefGoogle Scholar
  109. 109.
    Kalogiratou Z., Simos T.E.: Newton-Cotes formulae for long-time integration. J. Comput. Appl. Math. 158(1), 75–82 (2003)CrossRefGoogle Scholar
  110. 110.
    Simos T.E.: High order closed Newton-Cotes trigonometrically-fitted formulae for the numerical solution of the Schrödinger equation. Appl. Math. Comput. 209(1), 137–151 (2009)CrossRefGoogle Scholar
  111. 111.
    Simos T.E.: Closed Newton-Cotes trigonometrically-fitted formulae for the solution of the Schrödinger equation. MATCH Commun. Math. Comput. Chem. 60(3), 787–801 (2008)Google Scholar
  112. 112.
    Simos T.E.: Closed Newton-Cotes trigonometrically-fitted formulae of high order for the numerical integration of the Schrödinger equation. J. Math. Chem. 44(2), 483–499 (2008)CrossRefGoogle Scholar
  113. 113.
    Simos T.E.: High-order closed Newton-Cotes trigonometrically-fitted formulae for long-time integration of orbital problems. Comput. Phys. Commun. 178(3), 199–207 (2008)CrossRefGoogle Scholar
  114. 114.
    Simos T.E.: Closed Newton-Cotes trigonometrically-fitted formulae for numerical integration of the Schrödinger equation. Comput. Lett. 3(1), 45–57 (2007)CrossRefGoogle Scholar
  115. 115.
    Simos T.E.: Closed Newton-Cotes trigonometrically-fitted formulae for long-time integration of orbital problems. Revista Mexicana de Astronomia y Astrofysica 42(2), 167–177 (2006)Google Scholar
  116. 116.
    Simos T.E.: Closed Newton-Cotes trigonometrically-fitted formulae for long-time integration. Int. J. Modern Phys. C 14(8), 1061–1074 (2003)CrossRefGoogle Scholar
  117. 117.
    Kalogiratou Z., Monovasilis T., Simos T.E.: Symplectic integrators for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 158(1), 83–92 (2003)CrossRefGoogle Scholar
  118. 118.
    Simos T.E.: Closed Newton-Cotes trigonometrically-fitted formulae of high-order for long-time integration of orbital problems. Appl. Math. Lett. 22(10), 1616–1621 (2009)CrossRefGoogle Scholar
  119. 119.
    Simos T.E.: A family of P-stable exponentially-fitted methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 25(1), 65–84 (1999)CrossRefGoogle Scholar
  120. 120.
    Vigo-Aguiar J., Simos T.E.: Family of twelve steps exponential fitting symmetric multistep methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 32(3), 257–270 (2002)CrossRefGoogle Scholar
  121. 121.
    Avdelas G., Kefalidis E., Simos T.E.: New P-stable eighth algebraic order exponentially-fitted methods for the numerical integration of the Schrödinger equation. J. Math. Chem. 31(4), 371–404 (2002)CrossRefGoogle Scholar
  122. 122.
    Simos T.E.: A family of trigonometrically-fitted symmetric methods for the efficient solution of the Schrödinger equation and related problems. J. Math. Chem. 34(1–2), 39–58 (2003)CrossRefGoogle Scholar
  123. 123.
    Simos T.E.: Exponentially—fitted multiderivative methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 36(1), 13–27 (2004)CrossRefGoogle Scholar
  124. 124.
    Simos T.E.: A four-step exponentially fitted method for the numerical solution of the Schrödinger equation. J. Math. Chem. 40(3), 305–318 (2006)CrossRefGoogle Scholar
  125. 125.
    Simos T.E.: A family of four-step trigonometrically-fitted methods and its application to the Schrödinger equation. J. Math. Chem. 44(2), 447–466 (2009)CrossRefGoogle Scholar
  126. 126.
    Simos T.E.: Exponentially and trigonometrically fitted methods for the solution of the Schrödinger equation. Acta Appl. Math. 110(3), 1331–1352 (2010)CrossRefGoogle Scholar
  127. 127.
    Anastassi Z.A., Simos T.E.: A family of two-stage two-step methods for the numerical integration of the Schrödinger equation and related IVPs with oscillating solution. J. Math. Chem. 45(4), 1102–1129 (2009)CrossRefGoogle Scholar
  128. 128.
    Psihoyios G., Simos T.E.: Sixth algebraic order trigonometrically fitted predictor-corrector methods for the numerical solution of the radial Schrödinger equation. J. Math. Chem. 37(3), 295–316 (2005)CrossRefGoogle Scholar
  129. 129.
    Psihoyios G., Simos T.E.: The numerical solution of the radial Schrödinger equation via a trigonometrically fitted family of seventh algebraic order Predictor-Corrector methods. J. Math. Chem. 40(3), 269–293 (2006)CrossRefGoogle Scholar
  130. 130.
    Simos T.E.: A new explicit Bessel and Neumann fitted eighth algebraic order method for the numerical solution of the Schrödinger equation. J. Math. Chem. 27(4), 343–356 (2000)CrossRefGoogle Scholar
  131. 131.
    Anastassi Z.A., Simos T.E.: A family of two-stage two-step methods for the numerical integration of the Schrödinger equation and related IVPs with oscillating solution. J. Math. Chem. 45(4), 1102–1129 (2009)CrossRefGoogle Scholar
  132. 132.
    Simos T.E.: Dissipative trigonometrically-fitted methods for linear second-order IVPs with oscillating solution. Appl. Math. Lett. 17(5), 601–607 (2004)CrossRefGoogle Scholar
  133. 133.
    Simos T.E., Williams P.S.: On finite difference methods for the solution of the Schrödinger equation. Comput. Chem. 23, 513–554 (1999)CrossRefGoogle Scholar
  134. 134.
    Anastassi Z.A., Simos T.E.: Numerical multistep methods for the efficient solution of quantum mechanics and related problems. Phys. Rep. Rev. Sect. Phys. Lett. 482, 1–240 (2009)Google Scholar
  135. 135.
    Vigo-Aguiar J., Simos T.E.: Review of multistep methods for the numerical solution of the radial Schrödinger equation. Int. J. Quantum Chem. 103(3), 278–290 (2005)CrossRefGoogle Scholar
  136. 136.
    Simos T.E., Zdetsis A.D., Psihoyios G., Anastassi Z.A.: Special issue on mathematical chemistry based on papers presented within ICCMSE 2005 preface. J. Math. Chem. 46(3), 727–728 (2009)CrossRefGoogle Scholar
  137. 137.
    Simos T.E., Psihoyios G.: Special issue: the international conference on computational methods in sciences and engineering 2004—preface. J. Comput. Appl. Math. 191(2), 165–165 (2004)CrossRefGoogle Scholar
  138. 138.
    Simos T.E., Psihoyios G.: Special issue—selected papers of the international conference on computational methods in sciences and engineering (ICCMSE 2003) Kastoria, Greece, 12–16 September 2003—preface. J. Comput. Appl. Math. 175(1), IX–IX (2005)CrossRefGoogle Scholar
  139. 139.
    Simos T.E., Vigo-Aguiar J.: Special issue—selected papers from the conference on computational and mathematical methods for science and engineering (CMMSE-2002)—Alicante University, Spain, 20–25 September 2002—preface. J. Comput. Appl. Math. 158(1), IX–IX (2003)CrossRefGoogle Scholar
  140. 140.
    Simos T.E., Williams P.S.: A finite-difference method for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 79(2), 189–205 (1997)CrossRefGoogle Scholar
  141. 141.
    Ixaru L.G., Rizea M.: Comparison of some four-step methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 38(3), 329–337 (1985)CrossRefGoogle Scholar
  142. 142.
    Ixaru L.G., Rizea M.: A Numerov-like scheme for the numerical solution of the Schrödinger equation in the deep continuum spectrum of energies. Comput. Phys. Commun. 19, 23–27 (1980)CrossRefGoogle Scholar
  143. 143.
    Quinlan G.D., Tremaine S.: Symmetric multistep methods for the numerical integration of planetary orbits. astron. J. 100(5), 1694–1700 (1990)CrossRefGoogle Scholar
  144. 144.
    I. Alolyan, T.E. Simos, High algebraic order methods with vanished phase-lag and its first derivative for the numerical solution of the Schrödinger equation. J. Math. Chem. (2010). doi: 10.1007/s10910-010-9718-y

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Mathematics, College of SciencesKing Saud UniversityRiyadhSaudi Arabia
  2. 2.Laboratory of Computational Sciences, Department of Computer Science and Technology, Faculty of Sciences and TechnologyUniversity of PeloponneseTripolisGreece
  3. 3.AthensGreece

Personalised recommendations