Journal of Mathematical Chemistry

, Volume 48, Issue 4, pp 1010–1035 | Cite as

D-MORPH regression: application to modeling with unknown parameters more than observation data

  • Genyuan Li
  • Herschel Rabitz
Original Paper


Diffeomorphic modulation under observable response preserving homotopy (D-MORPH) is a model exploration method, originally developed for differential equations. We extend D-MORPH to regression treatment of a model described as a linear superposition of basis functions with unknown parameters being the expansion coefficients. The goal of D-MORPH regression is to improve prediction accuracy without sacrificing fitting accuracy. When there are more unknown parameters than observation data, the corresponding linear algebraic equation system is generally consistent, and has an infinite number of solutions exactly fitting the data. In this case, the solutions given by standard regression techniques can significantly deviate from the true system structure, and consequently provide large prediction errors for the model. D-MORPH regression is a practical systematic means to search over system structure within the infinite number of possible solutions while preserving fitting accuracy. An explicit expression is provided by D-MORPH regression relating the data to the expansion coefficients in the linear model. The expansion coefficients obtained by D-MORPH regression are particular linear combinations of those obtained by least-squares regression. The resultant prediction accuracy provided by D-MORPH regression is shown to be significantly improved in several model illustrations.


D-MORPH Least-squares regression Regularization Ridge regression Smoothing splines Orthonormal polynomial 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Peters D.C., Korosec F.R., Grist T.M., Block W.F., Holden J.E., Vigen K.K., Mistretta C.A.: Magn. Reson. Med. 43, 91–101 (2000)CrossRefGoogle Scholar
  2. 2.
    Daniel B.L., Yen Y.F., Glover G.H. et al.: Radiology 209, 499–509 (1998)Google Scholar
  3. 3.
    E.J. Candés, J. Romberg, in Proceedings of SPIE International Symposium on Electro. Imaging 1, 76–86 (2005), San JoseGoogle Scholar
  4. 4.
    Spira A., Beane J., Shah V., Liu G., Schembri F., Yang X., Palma J., Brosy J.S.: Effects of cigarette smoke on the human airway epithelial cell transcriptome. Proc. Nat. Acad. Sci. USA 101(27), 10143–10148 (2004)CrossRefGoogle Scholar
  5. 5.
    Li J., Zhao Z.W., Kazakov A., Dryer F.L.: Int. J. Chem. Kinet. 36, 566–575 (2004)CrossRefGoogle Scholar
  6. 6.
    J. Kettenring, B. Lindsay, D. Siegmud (eds). Statistics: Challenges and opportunities for the twenty-first century. NSF report. Available at
  7. 7.
    Cades E., Tao T.: Ann. Statist. 35, 2313 (2007)CrossRefGoogle Scholar
  8. 8.
    Carvalho C.M., Chang J.C., Lucas J.E., Nevins J.R., Wang Q., West M.: Am. Stat. Assoc. 103, 1438 (2008)CrossRefGoogle Scholar
  9. 9.
    Hastie T., Tibshirani R., Friedman J.: The elements of statistical learning: data mining, inference, and prediction. Springer, New York (2001)Google Scholar
  10. 10.
    Bishop C.M.: Pattern recognition and machine learning. Springer, New York (2007)Google Scholar
  11. 11.
    Tikhonov A.N.: Dokl. Akad. Nauk. SSSR 39, 195–198 (1943)Google Scholar
  12. 12.
    A.N. Tikhonov, Soviet Math. Dokl. 4, 1035–1038(1963). English translation of Dokl. Akad. Nauk. SSSR 151, 501–504 (1963)Google Scholar
  13. 13.
    Tikhonov A.N., Arsenin V.A.: Solution of Ill-posed Problems. Winston & Sons, Washington (1977) ISBN 0-470-99124-0Google Scholar
  14. 14.
    P.C. Hansen, Rank-deficient and Discrete ill-posed problems. (1998), SIAM.Google Scholar
  15. 15.
    Hoerl A.E.: Chem. Eng. Prog. 58, 54–59 (1962)Google Scholar
  16. 16.
    Hoerl A.E., Kennard R.: Technometrics 12, 55–67 (1970)CrossRefGoogle Scholar
  17. 17.
    Wahba G.: Spline models for observational data. SIAM, Philadelphia (1990)Google Scholar
  18. 18.
    Wahba G.: Ann. Stat. 13, 1378–1402 (1985)CrossRefGoogle Scholar
  19. 19.
    Wahba G., Wang Y.D., Gu C., Klein R., Klein B.: Ann. Stat. 23, 1865–1895 (1995)CrossRefGoogle Scholar
  20. 20., Categories: Linear algebra, Estimation theory Views.
  21. 21.
    Rothman A., Ho T.-S., Rabitz H.: Phys. Rev. A 72, 023416 (2005)CrossRefGoogle Scholar
  22. 22.
    Rothman A., Ho T.-S., Rabitz H.: J. Chem. Phys. 123, 134104 (2005)CrossRefGoogle Scholar
  23. 23.
    Rothman A., Ho T.-S., Rabitz H.: Phys. Rev. A 73, 053401 (2006)CrossRefGoogle Scholar
  24. 24.
    N. Danielson, V. Beltrani, J. Dominy, H. Rabitz, (manuscript in preparation)Google Scholar
  25. 25.
    Rao C.R., Mitra S.K.: Generalized inverse of matrix and its applications. Willey, New York (1971)Google Scholar
  26. 26.
    Matlab [7.0R14], 2004. MathWorks, IncGoogle Scholar
  27. 27.
    Bellman R.: Introduction to matrix analysis. 2nd edn, pp. 118. McGraw-hill, New York (1970)Google Scholar
  28. 28.
    Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P.: Numerical recipes in FORTRAN—The art of science computing. 2nd edn, pp. 51. Cambridge university press, New York (1992)Google Scholar
  29. 29.
    Alis O.F., Rabitz H.: J. Math. Chem. 25, 197–233 (1999)CrossRefGoogle Scholar
  30. 30.
    Li G., Wang S.W., Rabitz H.: J. Phys. Chem. A 106, 8721–8733 (2002)CrossRefGoogle Scholar
  31. 31.
    Li G., Hu J.S., Wang S.W., Georgopoulos P.G., Schoendorf J., Rabitz H.: J. Phys. Chem. A 110, 2474–2485 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of ChemistryPrinceton UniversityPrincetonUSA

Personalised recommendations