Journal of Mathematical Chemistry

, Volume 48, Issue 1, pp 118–127 | Cite as

Optimal control of chemical birth and growth processes in a deterministic model

Original Paper

Abstract

An optimal control problem for a deterministic model of chemical birth and growth processes is studied. The cost functional takes into account the two main industrial competitive interests: to avoid low temperatures and to shorten the cooling time. Explicit expressions of the optimal controls are obtained by using an analytical approximation of the relation between the instantaneous amount of crystallized polymer and the total amount of cold injected into the sample until this instant of time. Numerical simulations are shown to illustrate the good agreement with the analytical expressions. It is surprising and remarkable that the explicit expressions of the optimal controls can be derived by minimizing an elementary function in one real variable.

Keywords

Optimal control Polymer crystallization Numerical simulations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Avrami, Kinetics of phase change I, II and III. J. Chem. Phys. 7, 1103–1112 (1939); J. Chem. Phys. 8, 212–224 (1940); J. Chem. Phys. 9, 177–184 (1941)Google Scholar
  2. 2.
    Burger M., Capasso V.: Mathematical modelling and simulations of non-isothermal crystallization of polymers. Math. Mod. Meth. in Appl. Sci. (M3AS) 11, 1029–1053 (2001)CrossRefGoogle Scholar
  3. 3.
    Burger M., Capasso V., Micheletti A.: Optimal control of polymer morphologies. J. Eng. Math. 49, 339–358 (2004)CrossRefGoogle Scholar
  4. 4.
    Capasso, V. (eds): Mathematical Modelling for Polymer Processing. Polymerization, Crystallization, Manufacturing, Mathematics in Industry Series, vol. 2. Springer, Berlin (2003)Google Scholar
  5. 5.
    Capasso V.: Mathematical Models for Polymer Crystallization Processes. In: Capasso, V., Engl, H., Periau, J. (eds) Computational Mathematics Driven by Industrial Problems, pp. 39–67. Springer, Berlin (2000)Google Scholar
  6. 6.
    V. Capasso, R. Escobedo, C. Salani, in Moving Bands and Moving Boundaries in an Hybrid Model for the Crystallization of Polymers, Free Boundary Problems, Theory and Applications, vol. 147, ed. by P. Colli, C. Verdi, A. Visintin, (Birkhäuser, 2004), pp. 75–86Google Scholar
  7. 7.
    R. Escobedo, V. Capasso, in Reduction of a Mathhematical Model for Polymer Crystallization, Progress in Industrial Mathematics at ECMI 2002, ed. by A. Buikis, R. Ciegis, A.D. Fitt (Springer, Berlin, 2004), pp. 259–263Google Scholar
  8. 8.
    Escobedo R., Capasso V.: Moving bands and moving boundaries with decreasing speed in polymer crystallization. Math. Mod. Meth. Appl. Sci. (M3AS) 15(3), 325–341 (2005)CrossRefGoogle Scholar
  9. 9.
    Götz T., Pinnau R., Struckmeier J.: Optimal control of crystallization processes. Math. Mod. Meth. Appl. Sci. (M3AS) 16, 2029–2045 (2006)CrossRefGoogle Scholar
  10. 10.
    Kolmogoroff A.N.: On the statistical theory of the crystallization of metals. Isv. Akad. Nauk SSSR, Ser. Math. 1, 355–359 (1937)Google Scholar
  11. 11.
    Micheletti A., Burger M.: Stochastic and deterministic simulation of nonisothermal crystallization of polymers. J. Math. Chem. 30, 169–193 (2001)CrossRefGoogle Scholar
  12. 12.
    Ramos J.I.: Propagation and interaction of moving fronts in polymer crystallization. Appl. Math. Comput. 189, 780–795 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Departamento de Matemática Aplicada y CC. de la ComputaciónUniversidad de CantabriaSantanderSpain
  2. 2.Departamento de Matemáticas, Estadística y ComputaciónUniversidad de CantabriaSantanderSpain

Personalised recommendations