Advertisement

Journal of Mathematical Chemistry

, Volume 46, Issue 3, pp 952–961 | Cite as

Optical properties of ultra small Si nanoparticles: potential role of surface reconstruction and oxygen contamination

  • C. S. Garoufalis
  • A. D. Zdetsis
Original Paper

Abstract

We report accurate high level calculations of the optical gap and absorption spectrum of ultra small Si nanocrystals, with hydrogen and oxygen passivation, (with and without surface reconstruction). Our calculations have been performed in the framework of time dependent density functional theory (TDDFT) using the hybrid nonlocal exchange and correlation functional of Becke and Lee, Yang and Parr (B3LYP) and the multireference second-order perturbation theory (MR-MP2). We show that some of the details of the absorption and emission properties of the 1 nm Si nanoparticles can be efficiently described in the framework of TDDFT/B3LYP, by considering the effect of surface reconstruction and the geometry relaxation of the excited state. Additionally, we have examined the effect of oxygen contamination on the optical properties of 1 nm nanoparticles and its possible contribution to their experimentally observed absorption and emission properties.

Keywords

Silicon nanocrystal Oxygen passivation Optical properties Surface reconstruction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Canham L.T.: Appl. Phys. Lett. 57, 1046 (1990)CrossRefGoogle Scholar
  2. 2.
    Wilcoxon J.P., Samara G.A., Provencio P.N.: Phys. Rev. B 60, 2704 (1999)CrossRefGoogle Scholar
  3. 3.
    Wolkin M.V., Jorne J., Fauchet P.M., Allan G., Delerue C.: Phys. Rev. Lett. 82, 197 (1999)CrossRefGoogle Scholar
  4. 4.
    Schuppler S., Friedman S.L., Marcus M.A., Adler D.L., Xie Y.H., Ross F.M., Cha-bal Y.L., Harris T.D., Brus L.E., Brown W.L., Chaban E.E., Szajowski P.F., Christman S.B., Citrin P.H.: Phys. Rev. Lett. 72, 2648 (1994)CrossRefGoogle Scholar
  5. 5.
    Schuppler S., Friedman S.L., Marcus M.A., Adler D.L., Xie Y.H., Ross F.M., Cha-bal Y.L., Harris T.D., Brus L.E., Brown W.L., Chaban E.E., Szajowski P.F., Christman S.B., Citrin P.H.: Phys. Rev. B 52, 4910 (1995)CrossRefGoogle Scholar
  6. 6.
    Garoufalis C.S., Zdetsis A.D., Grimme S.: Phys. Rev. Lett. 87, 276402 (2001)CrossRefGoogle Scholar
  7. 7.
    Degoli E., Cantele G., Luppi E., Magri R., Ninno D., Bisi O., Ossicini S.: Phys. Rev. B 69, 155411 (2004)CrossRefGoogle Scholar
  8. 8.
    Vasiliev I., Chelikowsky J.R., Martin R.M.: Phys. Rev. B 65, 121302 (2002)CrossRefGoogle Scholar
  9. 9.
    Puzder A., Williamson A.J., Grossman J.C., Galli G.: J. Am. Chem. Soc. 125, 2786 (2003)CrossRefGoogle Scholar
  10. 10.
    Puzder A., Williamson A.J., Grossman J.C., Galli G.: J. Chem. Phys. 117, 6721 (2002)CrossRefGoogle Scholar
  11. 11.
    Zhou Z., Brus L., Friesner R.: Nano Lett. 3, 163 (2003)CrossRefGoogle Scholar
  12. 12.
    Luppi M., Ossicini S.: J. Appl. Phys. 94, 2130 (2003)CrossRefGoogle Scholar
  13. 13.
    Zhou Z., Friesner R.A., Brus L.: J. Am. Chem. Soc. 125, 15599 (2003)CrossRefGoogle Scholar
  14. 14.
    A.D. Zdetsis, C.S. Garoufalis, S. Grimme, NATO Advanced Research Workshop on “Quantum Dots: Fundamentals, Applications, and Frontiers” (Crete 2003) (Kluwer-Springer, 2005) pp. 317–332Google Scholar
  15. 15.
    Garoufalis C.S., Zdetsis A.D.: Phys. Chem. Chem. Phys. 8, 808 (2006)CrossRefGoogle Scholar
  16. 16.
    Zdetsis A.D.: Rev. Adv. Mater. Sci.(RAMS) 11, 56–78 (2006)Google Scholar
  17. 17.
    Akcakir O., Therrien J., Belomoin G., Barry N., Muller J.D., Gratton E., Nayfeh M.: Appl. Phys. Lett. 76, 1857 (2000)CrossRefGoogle Scholar
  18. 18.
    Mitas L., Therrien J., Twesten R., Belomoin M., Nayfeh G.: Appl. Phys. Lett. 78, 1918 (2001)CrossRefGoogle Scholar
  19. 19.
    Rao S., Sutin J., Clegg R., Gratton E., Nayfeh M.H., Habbal S., Tsolakidis A., Martin R.: Phys. Rev. B 69, 205319 (2004)CrossRefGoogle Scholar
  20. 20.
    M.E. Casida in Recent Advances in Density Functional Methods, vol 1, ed. by D.P. Chong (World Scientific, Singapore, 1995)Google Scholar
  21. 21.
    Stephens P.J., Devlin F.J., Chabalowski C.F., Frisch M.J.: J. Phys. Chem. 98, 11623 (1994)CrossRefGoogle Scholar
  22. 22.
    Becke A.D.: Phys. Rev. A 38, 3098 (1988)CrossRefGoogle Scholar
  23. 23.
    Perdew J.P.: Phys. Rev. B 33, 8822 (1986)CrossRefGoogle Scholar
  24. 24.
    Murphy R.B., Messmer R.P.: Chem. Phys. Lett. 183, 443 (1991)CrossRefGoogle Scholar
  25. 25.
    Murphy R.B., Messmer R.P.: J. Chem. Phys. 97, 4170 (1992)CrossRefGoogle Scholar
  26. 26.
    TURBOMOLE (Vers. 5.3), Universitat Karlsruhe (2000)Google Scholar
  27. 27.
    Schafer A., Horn H., Ahlrichs R.: J. Chem. Phys. 97, 2571 (1992)CrossRefGoogle Scholar
  28. 28.
    Bauernschmitt R., Ahlrichs R.: Chem. Phys. Lett. 256, 454 (1996)CrossRefGoogle Scholar
  29. 29.
    Grimme S., Waletzke M.: Phys. Chem. Chem. Phys. 2, 2075 (2000)CrossRefGoogle Scholar
  30. 30.
    M.J. Frisch et al., Gaussian 03, Revision C.02 (Gaussian, Inc., Wallingford CT, 2004)Google Scholar
  31. 31.
    Sundholm D.: Phys. Chem. Chem. Phys. 6, 2044 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of PatrasPatrasGreece

Personalised recommendations