Journal of Mathematical Chemistry

, Volume 47, Issue 1, pp 210–218 | Cite as

On general sum-connectivity index



We report some properties especially lower and upper bounds in terms of other graph invariants for the general sum-connectivity index which generalizes both the ordinary sum-connectivity index and the first Zagreb index. Additionally, we give the Nordhaus-Gaddum-type result for the general sum-connectivity index.


Randić connectivity index Sum-connectivity index General Randić connectivity index General sum-connectivity index 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Randić M.: On characterization of molecular branching. J. Am. Chem. Soc. 97, 6609–6615 (1975)CrossRefGoogle Scholar
  2. 2.
    Kier L.B., Hall L.H.: Molecular Connectivity in Chemistry and Drug Research. Academic Press, New York (1976)Google Scholar
  3. 3.
    Kier L.B., Hall L.H.: Molecular Connectivity in Structure-Activity Analysis. Research Studies Press/Wiley, Letchworth/New York (1986)Google Scholar
  4. 4.
    Todeschini R., Consonni V.: Handbook of Molecular Descriptors. Wiley-VCH, Weinheim (2000)CrossRefGoogle Scholar
  5. 5.
    Pogliani L.: From molecular connectivity indices to semiempirical connectivity terms: Recent trends in graph theoretical descriptors. Chem. Rev. 100, 3827–3858 (2000)CrossRefGoogle Scholar
  6. 6.
    García-Domenech R., Gálvez J., de Julián-Ortiz J.V., Pogliani L.: Some new trends in chemical graph theory. Chem. Rev. 108, 1127–1169 (2008)CrossRefGoogle Scholar
  7. 7.
    Stankevich V., Skvortsova M.I., Zefirov N.S.: On a quantum chemical interpretation of molecular connectivity indices for conjugated hydrocarbons. J. Mol. Struct. (THEOCHEM) 342, 173–179 (1995)CrossRefGoogle Scholar
  8. 8.
    Galvez J.: On a topological interpretation of electronic and vibrational molecular energies. J. Mol. Struct. (THEOCHEM) 429, 255–264 (1998)CrossRefGoogle Scholar
  9. 9.
    Estrada E.: Physicochemical interpretation of molecular connectivity indices. J. Phys. Chem. A 106, 9085–9091 (2002)CrossRefGoogle Scholar
  10. 10.
    Klein D.J., Palacios J.L., Randić M., Trinajstić N.: Random walks and chemical graph theory. J. Chem. Inf. Comput. Sci. 44, 1521–1525 (2004)Google Scholar
  11. 11.
    Randić M.: On history of the Randić index and emerging hostility toward chemical graph theory. MATCH Commun. Math. Comput. Chem. 59, 5–124 (2008)Google Scholar
  12. 12.
    Randić M.: The connectivity index 25 years later. J. Mol. Graph. Model. 20, 19–35 (2001)CrossRefGoogle Scholar
  13. 13.
    Li X., Gutman I.: Mathematical Aspects of Randić-Type Molecular Structure Descriptors. University of Kragujevac, Kragujevac (2006)Google Scholar
  14. 14.
    Gutman, I., Furtula, B. (eds): Recent Results in the Theory of Randić Index. University of Kragujevac, Kragujevac (2008)Google Scholar
  15. 15.
    B. Zhou, N. Trinajstić, On a novel connectivity index. J. Math. Chem. in pressGoogle Scholar
  16. 16.
    Ivanciuc O., Ivanciuc T., Cabrol-Bass D., Balaban A.T.: Evaluation in quantitative structure-property relationship models of structural descriptors derived from information-theory operators. J. Chem. Inf. Comput. Sci. 40, 631–643 (2000)Google Scholar
  17. 17.
    Z. Du, B. Zhou, N. Trinajstić, Sum-connectivity indices of trees and unicyclic graphs of fixed maximum degree. SubmittedGoogle Scholar
  18. 18.
    Bollobás B., Erdös P.: Graphs of extremal weights. Ars Comb. 50, 225–233 (1998)Google Scholar
  19. 19.
    Zhou B., Luo W.: A note on general Randić index. MATCH Commun. Math. Comput. Chem. 62, 155–162 (2009)Google Scholar
  20. 20.
    Zhou B., Vukičević D.: On general Randić and general zeroth-order Randić indices. MATCH Commun. Math. Comput. Chem. 62, 189–196 (2009)Google Scholar
  21. 21.
    Gutman I., Trinajstić N.: Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons. Chem. Phys. Lett. 17, 535–538 (1972)CrossRefGoogle Scholar
  22. 22.
    Gutman I., Ruščić B., Trinajstić N., Wilcox C.F. Jr.: Graph theory and molecular orbitals. XII. Acyclic polyenes. J. Phys. Chem. 62, 3399–3405 (1975)CrossRefGoogle Scholar
  23. 23.
    Nikolić S., Kovačević G., Miličević A., Trinajstić N.: The Zagreb indices 30 years after. Croat. Chem. Acta 76, 113–124 (2003)Google Scholar
  24. 24.
    Gutman I., Das K.C.: The first Zagreb index 30 years after. MATCH Commun. Math. Comput. Chem. 50, 83–92 (2004)Google Scholar
  25. 25.
    S.C. Basak, G.D. Grunwald, G.J. Niemi, Use of graph-theoretic geometric molecular descriptors in structure-activity relationships. in From Chemical Topology to Three-Dimensional Geometry, ed. by A.T. Balaban (Plenum Press, New York, 1997), pp. 73–116Google Scholar
  26. 26.
    S.C. Basak, B.D. Gute, G.D. Grunwald, A hierarchical approach to the development of QSAR models using topological, geometrical and quantum chemical parameters. in Topological Indices and Related Descriptors in QSAR and QSPR, ed. by J. Devillers, A.T. Balaban (Gordon & Breach, Amsterdam, 1999), pp. 675–696Google Scholar
  27. 27.
    de Caen D.: An upper bound on the sum of squares of degrees in a graph. Discrete. Math. 185, 245–248 (1998)CrossRefGoogle Scholar
  28. 28.
    Li J., Pan Y.: de Caen’s inequality and bounds on the largest Laplacian eigenvalue of a graph. Lin. Algebra Appl. 328, 153–160 (2001)CrossRefGoogle Scholar
  29. 29.
    Das K.C.: Sharp bounds for the sum of the squares of the degrees of a graph. Kragujevac J. Math. 25, 31–49 (2003)Google Scholar
  30. 30.
    Gutman I.: Graphs with smallest sum of squares of vertex degrees. Kragujevac J. Math. 25, 51–54 (2003)Google Scholar
  31. 31.
    Das K.C., Gutman I.: Some properties of the second Zagreb index. MATCH Commun. Math. Comput. Chem. 52, 103–112 (2004)Google Scholar
  32. 32.
    Zhou B.: Zagreb indices. MATCH Commun. Math. Comput. Chem. 50, 113–118 (2004)Google Scholar
  33. 33.
    Vukičević D., Trinajstić N.: On the discriminatory power of the Zagreb indices for molecular graphs. MATCH Commun. Math. Comput. Chem. 53, 111–138 (2005)Google Scholar
  34. 34.
    Zhou B.: Gutman I., Further properties of Zagreb indices. MATCH Commun. Math. Comput. Chem. 54, 233–239 (2005)Google Scholar
  35. 35.
    Zhou B., Stevanović D.: A note on Zagreb indices. MATCH Commun. Math. Comput. Chem. 56, 571–578 (2006)Google Scholar
  36. 36.
    Zhou B.: Upper bounds for the Zagreb indices and the spectral radius of series-parallel graphs. Int. J. Quantum Chem. 107, 875–878 (2007)CrossRefGoogle Scholar
  37. 37.
    Zhou B.: Remarks on Zagreb indices. MATCH Commun. Math. Comput. Chem. 57, 591–596 (2007)Google Scholar
  38. 38.
    Nordhaus E.A., Gaddum J.W.: On complementary graphs. Amer. Math. Mon. 63, 175–177 (1956)CrossRefGoogle Scholar
  39. 39.
    Bonchev D., Trinajstić N.: Information theory, distance matrix, and molecular branching. J. Chem. Phys. 67, 4517–4533 (1977)CrossRefGoogle Scholar
  40. 40.
    Gutman I., Lepović M.: Choosing the exponent in the definition of the connectivity index. J. Serb. Chem. Soc. 66, 605–611 (2001)Google Scholar
  41. 41.
    Clark L.H., Moon J.W.: On general Randić index for certain families of trees. Ars Combin. 54, 223–235 (1999)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of MathematicsSouth China Normal UniversityGuangzhouChina
  2. 2.The Rugjer Bošković InstituteZagrebCroatia

Personalised recommendations