Journal of Mathematical Chemistry

, Volume 46, Issue 4, pp 1149–1157 | Cite as

A complexity-based measure and its application to phylogenetic analysis

Original Paper

Abstract

In this article, we propose two well-defined distance metrics of biological sequences based on a universal complexity profile. To illustrate our metrics, phylogenetic trees of 18 Eutherian mammals from comparison of their mtDNA sequences and 24 coronaviruses using the whole genomes are constructed. The resulting monophyletic clusters agree well with the established taxonomic groups.

Keywords

Sequence complexity mtDNA SARS-CoV Phylogenetic analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Snel B., Bork P., Huynen M.A.: Nat. Genet. 21, 108 (1999)CrossRefGoogle Scholar
  2. Campbell A., Mrazek J., Karlin S.: Proc. Natl. Acad. Sci. USA 96, 9184 (1999)CrossRefGoogle Scholar
  3. Karlin S., Ladunga I.: Proc. Natl. Acad. Sci. USA 91, 12832 (1994)CrossRefGoogle Scholar
  4. Karlin S., Mrázek J.: Proc. Natl. Acad. Sci. USA 94, 10227 (1997)CrossRefGoogle Scholar
  5. Blaisdell B.E.: Proc. Natl. Acad. Sci. USA 83, 5155 (1986)CrossRefGoogle Scholar
  6. Li M., Badger J.H., Chen X., Kwong S., Kearney P., Zhang H.Y.: Bioinformatics 17, 149 (2001)CrossRefGoogle Scholar
  7. Otu H.H., Sayood K.: Bioinformatics 19, 2122 (2003)CrossRefGoogle Scholar
  8. C. Li, J. Wang, Similarity analysis of DNA sequences based on the generalized LZ complexity of (0,1)-sequences, Preprint, J. Math. Chem. (2006)Google Scholar
  9. Cover T.M., Thomas J.A.: Elements of Information Theory. Tsinghua University Press, Beijing (2003)Google Scholar
  10. Orlov Y.L., Potapov V.N.: Nucleic Acids Res. 32, 628 (2004)CrossRefGoogle Scholar
  11. Jiang T., Xu Y., Zhang M.Q.: Current Topics in Computational Molecular Biology, pp. 157–171. Tsinghua University Press and The MIT Press, Tsinghua and Cambridge (2002)Google Scholar
  12. Lempel A., Ziv J.: IEEE T. Inform. Theory 22, 75 (1976)CrossRefGoogle Scholar
  13. Ziv J., Lempel A.: IEEE T. Inform. Theory 23, 337 (1977)CrossRefGoogle Scholar
  14. Ziv J., Lempel A.: IEEE T. Inform. Theory 24, 530 (1978)CrossRefGoogle Scholar
  15. Li B., Li Y.B., He H.B.: Geno. Prot. Bioinfo. 3, 206 (2005)Google Scholar
  16. J. Felsenstein, PHYLIP (Phylogeny Inference Package) version 3.5c. Department of Genetics, University of Washington, Seattle (1993)Google Scholar
  17. Page R.D.: Comput. Appl. Biosci. 12, 357 (1996)Google Scholar
  18. Marra M.A. et al.: Science 300, 1399 (2003)CrossRefGoogle Scholar
  19. Rota P.A. et al.: Science 300, 1394 (2003)CrossRefGoogle Scholar
  20. Zheng W.C., Chen L.L., Ou H.Y., Gao F., Zhang C.T.: Mol. Phylogenet. Evol. 36, 224 (2005)CrossRefGoogle Scholar
  21. Liò P., Goldman N.: Trends Microbiol. 12, 106 (2004)CrossRefGoogle Scholar
  22. Snijder E.J., Bredenbeek P.J., Dobbe J.C., Thiel V., Ziebuhr J., Poon L.L., Guan Y., Rozanov M., Spaan W.J., Gorbalenya A.E.: J. Mol. Biol. 331, 991 (2003)CrossRefGoogle Scholar
  23. Vinga S., Almeida J.: Bioinformatics 19, 513 (2003)CrossRefGoogle Scholar
  24. Nandy A.: Curr. Sci. 66, 309 (1994)Google Scholar
  25. Nandy A., Nandy P.: Chem. Phys. Lett. 368, 102 (2003)CrossRefGoogle Scholar
  26. Randić M., Balaban A.T., Novič M., Založnik A., Pisanski T.: Period. Biol. 107, 403 (2005)Google Scholar
  27. Randić M., Butina D., Zupan J.: Chem. Phys. Lett. 419, 528 (2006)CrossRefGoogle Scholar
  28. Zhang R., Zhang C.T.: J. Biomol. Struc. Dyn. 11, 767 (1994)Google Scholar
  29. Liao B., Li R., Zhu W., Xiang X.: J. Math. Chem. 42, 47 (2007)CrossRefGoogle Scholar
  30. Y.S. Zhang, M.S. Tan, Visualization of DNA sequences based on 3DD-Curves, Preprint, J. Math. Chem. (2007)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Applied MathematicsDalian University of TechnologyDalianPeople’s Republic of China
  2. 2.College of Advanced Science and TechnologyDalian University of TechnologyDalianPeople’s Republic of China
  3. 3.Department of MathematicsBohai UniversityJinzhouPeople’s Republic of China
  4. 4.Department of MathematicsShanghai Normal UniversityShanghaiPeople’s Republic of China
  5. 5.Scientific Computing Key Laboratory, Shanghai UniversityShanghaiPeople’s Republic of China

Personalised recommendations