Polarity formation by a higher order interaction Markov-like chain

  • Mathias Rech
  • Athanasios Batagiannis
  • Jürg Hulliger
Original Paper

Abstract

Vector property generation is discussed for chain growth by higher order interactions. Because of a deterministic property evolution a state space approach was used. Although not strictly Markovian, the system shows ergodic properties and convergence for a large number of attachment steps. For reasonable interaction energies attributed to increasing order, the main extra contribution to polarity formation results from interactions up to next nearest neighbours. Nonlinear equations up to third order were solved by an iterative procedure.

Keywords

Markov chain Macroscopic polarity formation Higher order 

References

  1. 1.
    Ramamurthy V., Eaton D.F.: Chem. Mater. 6, 1128–1136 (1994)CrossRefGoogle Scholar
  2. 2.
    Hulliger J., König O., Hoss R.: Adv. Mater. 8, 719–721 (1995)CrossRefGoogle Scholar
  3. 3.
    Nauta K., Miller R.E.: Science 283, 1895–1897 (1999)CrossRefGoogle Scholar
  4. 4.
    Norris J.R.: Markov Chains. Cambridge University Press, Cambridge (1997)Google Scholar
  5. 5.
    Sethna J.P.: Statistical Mechanics: Entropy, Order Parameters, and Complexity. Oxford University Press, Oxford (2006)Google Scholar
  6. 6.
    Harris K.D.M., Jupp P.: Proc. R. Soc. Lond. A 453, 333–352 (1997)CrossRefGoogle Scholar
  7. 7.
    Harris K.D.M., Jupp P.: Chem. Phys. Lett. 274, 525–534 (1998)CrossRefGoogle Scholar
  8. 8.
    König O., Bürgi H.-B., Armbruster T., Hulliger J., Weber T.: J. Am. Chem. Soc. 119, 10632–10640 (1997)CrossRefGoogle Scholar
  9. 9.
    Gervais C., Wüst T., Behrnd N.-R., Wübbenhorst M., Hulliger J.: Chem. Mater. 17, 85–94 (2005)CrossRefGoogle Scholar
  10. 10.
    Shannon C.E.: AT&T Tech. J. 27, 623–656 (1948)Google Scholar
  11. 11.
    Hiller L., Isaacson L.: Experimental Music. McGraw-Hill, New York (1959)Google Scholar
  12. 12.
    Cuticchia A.J., Ivarie R., Arnold J.: Nucleic Acids Res. 20, 3651–3657 (1992)CrossRefGoogle Scholar
  13. 13.
    Shmilovici A., Ben-Gal I.: Computation. Stat. 22, 49–69 (2007)Google Scholar
  14. 14.
    Durbin R., Eddy S.R., Krogh A., Mitchison G.: Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press, Cambridge (1999)Google Scholar
  15. 15.
    Meyn S.P., Tweedie R.L.: Markov Chains and Stochastic Stability. Springer-Verlag, London (1993)Google Scholar
  16. 16.
    Leike I., Marlow F.: Zeolites 16, 65–69 (1996)CrossRefGoogle Scholar
  17. 17.
    Chvoj Z., Šesták J., Tříska A.: Kinetic Phase Transitions. Elsevier, New York (1991)Google Scholar
  18. 18.
    A. Batagiannis, T. Wüst, J. Hulliger, J. Math. Chem. (in press). doi:10.1007/s10910-008-9433-0
  19. 19.
    H. Bebie, J. Hulliger, S. Eugster, M. Alaga-Bogdanović, Phys. Rev. E 66, 021605-1–021605-10 (2002)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Mathias Rech
    • 1
  • Athanasios Batagiannis
    • 1
  • Jürg Hulliger
    • 1
  1. 1.Department of Chemistry and BiochemistryUniversity of BerneBerneSwitzerland

Personalised recommendations