Journal of Mathematical Chemistry

, Volume 46, Issue 4, pp 1087–1102 | Cite as

The dielectric response with respect to the weight distribution of relaxation times

  • M. Kozłowski
  • R. Rałowski


The subjects of this paper are the analytical and partly numerical calculations concerning the problem how the dielectric response in complex solid dielectric materials depends on a statistical distribution of relaxation times.


Electric permittivity Relaxation time Fubini Theorem Lebesgue measure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Weron K., Jurlewicz A.: Two forms of self-similarity as a fundamental feature of the power-law dielectric response. J. Phys. A: Math. Gen. 26, 395–410 (1993)CrossRefGoogle Scholar
  2. 2.
    N.E. Hill, W.E. Vaughan, A.H. Price, M. Davies, Dielectric Properties and Molecular Behaviour (Van Nostrand Co. Ltd., London, 1969) pp. 289–291Google Scholar
  3. 3.
    Jonscher A.K.: Dielectric Relaxation in Solids. Chelsea Dielectric Press, London (1983)Google Scholar
  4. 4.
    Jonscher A.K.: Universal Relaxation Law. Chelsea Dielectric Press, London (1996)Google Scholar
  5. 5.
    W. Rudin, Complex and Real Analysis (PWN, 1986)Google Scholar
  6. 6.
    Kozłowski M., Weron K., Klauzer A.: Revised approach to dielectric relaxation of TMACAB crystals in the vicinity of ferroelectric phase transition. IEEE Trans. Dielectr. Electr. Insulat. 8(3), 481–484 (2001)CrossRefGoogle Scholar
  7. 7.
    Kozłowski M., Rałowski R., Kołodziej H.A.: An application of the Burr function to the description of dielectric relaxation data in frequency domain. IEEE Trans. Dielectr. Electr. Insulat. 10(2), 256–259 (2003)CrossRefGoogle Scholar
  8. 8.
    Rałowski R., Kozłowski M.: The Havriliak-Negami dielectric response in time domain. Polish J. Chem. 79, 1353–1356 (2005)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Faculty of ChemistryWrocław UniversityWroclawPoland
  2. 2.Institute of MathematicsWrocław University of TechnologyWroclawPoland

Personalised recommendations