Journal of Mathematical Chemistry

, Volume 46, Issue 2, pp 514–521 | Cite as

New upper bounds on Zagreb indices

Original Paper

Abstract

The first Zagreb index M1(G) is equal to the sum of squares of the degrees of the vertices, and the second Zagreb index M2(G) is equal to the sum of the products of the degrees of pairs of adjacent vertices of the underlying molecular graph G. In this paper we obtain an upper bound on the first Zagreb index M1(G) of G in terms of the number of vertices (n), number of edges (m), maximum vertex degree (Δ1), second maximum vertex degree (Δ2) and minimum vertex degree (δ). Using this result we find an upper bound on M2(G). Moreover, we present upper bounds on \({M_1(G)+M_1(\overline{G})}\) and \({M_2(G)+M_2(\overline{G})}\) in terms of nm, Δ1, Δ2, δ, where \({\overline{G}}\) denotes the complement of G.

Keywords

Zagreb index Molecular graph Degree (of vertex) First Zagreb index Second Zagreb index 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gutman I., Trinajstić N.: Chem. Phys. Lett. 17, 535 (1972)CrossRefGoogle Scholar
  2. 2.
    Gutman I., Ruščić B., Trinajstić N., Wilcox C.F.: J. Chem. Phys. 62, 3399 (1975)CrossRefGoogle Scholar
  3. 3.
    Nikolić S., Kovačević G., Milićević A., Trinajstić N.: Croat. Chem. Acta. 76, 113 (2003)Google Scholar
  4. 4.
    Chen S., Xia F.: MATCH Commun. Math. Comput. Chem. 58, 663 (2007)Google Scholar
  5. 5.
    Das K.C.: Discr. Math. 285, 57 (2004)CrossRefGoogle Scholar
  6. 6.
    Das K.C., Gutman I.: MATCH Commun. Math. Comput. Chem. 52, 103 (2004)Google Scholar
  7. 7.
    Zhou B.: MATCH Commun. Math. Comput. Chem. 52, 113 (2004)Google Scholar
  8. 8.
    Zhang L., Wu B.: MATCH Commun. Math. Comput. Chem. 54, 189 (2005)Google Scholar
  9. 9.
    Zhou B., Gutman I.: MATCH Commun. Math. Comput. Chem. 54, 233 (2005)Google Scholar
  10. 10.
    Kumar V., Madan A.K.: J. Math. Chem. 42, 925 (2007)CrossRefGoogle Scholar
  11. 11.
    Zhou B.: MATCH Commun. Math. Comput. Chem. 57, 591 (2007)Google Scholar
  12. 12.
    Deng H.: MATCH Commun. Math. Comput. Chem. 57, 597 (2007)Google Scholar
  13. 13.
    Zhou B.: Int. J. Quantum Chem. 107, 875 (2007)CrossRefGoogle Scholar
  14. 14.
    Yan Z., Liu H., Liu H.: J. Math. Chem. 42, 565 (2007)CrossRefGoogle Scholar
  15. 15.
    Estrada E., Matamala A.R.: J. Math. Chem. 43, 508 (2008)CrossRefGoogle Scholar
  16. 16.
    Zhou B., Trinajstić N.: J. Math. Chem. 44, 235 (2008)CrossRefGoogle Scholar
  17. 17.
    Balaban A.T., Motoc I., Bonchev D., Mekenyan O.: Topics Curr. Chem. 114, 21 (1983)CrossRefGoogle Scholar
  18. 18.
    Todeschini R., Consonni V.: Handbook of Molecular Descriptors. Wiley–VCH, Weinheim (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of MathematicsSungkyunkwan UniversitySuwonRepublic of Korea
  2. 2.Faculty of ScienceUniversity of KragujevacKragujevacSerbia
  3. 3.Department of MathematicsSouth China Normal UniversityGuangzhouPeople’s Republic of China

Personalised recommendations