Journal of Mathematical Chemistry

, Volume 46, Issue 1, pp 231–260 | Cite as

On the derivative of the associated Legendre function of the first kind of integer degree with respect to its order (with applications to the construction of the associated Legendre function of the second kind of integer degree and order)

Original Paper

Abstract

The derivative of the associated Legendre function of the first kind of integer degree with respect to its order, \({\partial {P_{n}^{\mu}(z)}/\partial\mu}\), is studied. After deriving and investigating general formulas for μ arbitrary complex, a detailed discussion of \({[\partial P_{n}^{\mu}(z)/\partial\mu]_{\mu=\pm m}}\), where m is a non-negative integer, is carried out. The results are applied to obtain several explicit expressions for the associated Legendre function of the second kind of integer degree and order, \({Q_{n}^{\pm m}(z)}\). In particular, we arrive at formulas which generalize to the case of \({Q_{n}^{\pm m}(z)}\) (0 ≤ mn) the well-known Christoffel’s representation of the Legendre function of the second kind, Qn(z). The derivatives \({{[\partial^{2} P_{n}^{\mu}(z)/\partial\mu^{2}]_{\mu=m}},{[\partial Q_{n}^{\mu}(z)/\partial\mu]_{\mu=m}}}\) and \({[\partial Q_{-n-1}^{\mu}(z)/\partial\mu]_{\mu=m}}\), all with m > n, are also evaluated.

Keywords

Legendre functions Parameter derivative Special functions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Todhunter I.: An Elementary Treatise on Laplace’s Functions, Lamé’s Functions and Bessel’s Functions. Macmillan, London (1975)Google Scholar
  2. 2.
    Ferrers N.M.: An Elementary Treatise on Spherical Harmonics. Macmillan, London (1877)Google Scholar
  3. 3.
    Neumann F.: Beiträge zur Theorie der Kugelfunctionen. Teubner, Leipzig (1878)Google Scholar
  4. 4.
    Heine E.: Handbuch der Kugelfunctionen, vol. 1, 2nd edn. Reimer, Berlin (1878)Google Scholar
  5. 5.
    Heine E.: Handbuch der Kugelfunctionen, vol. 2, 2nd edn. Reimer, Berlin (1881)Google Scholar
  6. 6.
    Olbricht R.: Nova Acta Leop. Carol. Akad. 52, 1 (1887)Google Scholar
  7. 7.
    W.E. Byerly, An Elementary Treatise on Fourier’s Series and Spherical, Cylindrical, and Ellipsoidal Harmonics, with Applications to Problems in Mathematical Physics (Ginn, Boston, 1893) [reprinted: (Dover, Mineola, NY, 2003)]Google Scholar
  8. 8.
    Hobson E.W.: Philos. Trans. R. Soc. Lond. A 187, 443 (1896)CrossRefGoogle Scholar
  9. 9.
    A. Wangerin, Theorie der Kugelfunktionen und der verwandten Funktionen, insbesondere der Lamé’schen und Bessel’schen, in Encyklopädie der mathematischen Wissenschaften, vol. 2.1 (Teubner, Leipzig, 1904), p. 695Google Scholar
  10. 10.
    Barnes E.W.: Q. J. Pure Appl Math. 39, 97 (1907)Google Scholar
  11. 11.
    Wangerin A.: Theorie des Potentials und der Kugelfunktionen, vol. 2. de Gruyter, Berlin (1921)Google Scholar
  12. 12.
    Hobson E.W.: The Theory of Spherical and Ellipsoidal Harmonics. Cambridge University Press, Cambridge (1931) [reprinted: (Chelsea, New York, 1955)]Google Scholar
  13. 13.
    Ch. Snow, Hypergeometric and Legendre Functions with Applications to Integral Equations of Potential Theory, 2nd edn. (National Bureau of Standards, Washington, DC, 1952)Google Scholar
  14. 14.
    A. Erdélyi (ed.), Higher Transcendental Functions, vol. 1 (McGraw-Hill, New York, 1953), Chap. IIIGoogle Scholar
  15. 15.
    Morse P.M., Feshbach H.: Methods of Theoretical Physics. McGraw-Hill, New York (1953)Google Scholar
  16. 16.
    Lense J.: Kugelfunktionen, 2nd edn. Geest & Portig, Leipzig (1954)Google Scholar
  17. 17.
    L. Robin, Fonctions Sphériques de Legendre et Fonctions Sphéroïdales, vol. 1 (Gauthier-Villars, Paris, 1957)Google Scholar
  18. 18.
    L. Robin, Fonctions Sphériques de Legendre et Fonctions Sphéroïdales, vol. 2 (Gauthier-Villars, Paris, 1958)Google Scholar
  19. 19.
    L. Robin, Fonctions Sphériques de Legendre et Fonctions Sphéroïdales, vol. 3 (Gauthier-Villars, Paris, 1959)Google Scholar
  20. 20.
    E. Jahnke, F. Emde, F. Lösch, Tafeln höherer Funktionen, 6th edn. (Teubner, Stuttgart, 1960)Google Scholar
  21. 21.
    A. Kratzer, W. Franz, Transzendente Funktionen (Akademische Verlagsgesellschaft, Leipzig, 1960), Chap. 5Google Scholar
  22. 22.
    I.A. Stegun, in Legendre functions, ed. by M. Abramowitz, I.A. Stegun. Handbook of Mathematical Functions (Dover, New York, 1965), p. 331Google Scholar
  23. 23.
    Magnus W., Oberhettinger F., Soni R.P.: Formulas and Theorems for the Special Functions of Mathematical Physics, 3rd edn. Springer, Berlin (1966)Google Scholar
  24. 24.
    MacRobert T.M.: Spherical Harmonics, 3rd edn. Pergamon, Oxford (1967)Google Scholar
  25. 25.
    Gradshteyn I.S., Ryzhik I.M.: Table of Integrals, Series, and Products, 5th edn. Academic, San Diego (1994)Google Scholar
  26. 26.
    N.M. Temme, Special Functions. An Introduction to the Classical Functions of Mathematical Physics (Wiley, New York, 1996), Chap. 8Google Scholar
  27. 27.
    A.P. Prudnikov, Yu.A. Brychkov, O.I. Marichev, Integrals and Series. Special Functions (Nauka, Moscow, 1983) (in Russian)Google Scholar
  28. 28.
    A.P. Prudnikov, Yu.A. Brychkov, O.I. Marichev, Integrals and Series. Special Functions. Supplementary Chapters, 2nd edn. (Fizmatlit, Moscow, 2003) (in Russian)Google Scholar
  29. 29.
    Yu.A. Brychkov, Special Functions. Derivatives, Integrals, Series, and Other Formulas (Fizmatlit, Moscow, 2006) (in Russian)Google Scholar
  30. 30.
    F.E. Neumann, J. Reine Angew. Math. (Crelle J.) 37, 21 (1848) [reprinted in: Franz Neumanns gesammelte Werke, vol. 3 (Teubner, Leipzig, 1912), p. 439]Google Scholar
  31. 31.
    Sugiura Y.: Z. Phys. 45, 484 (1927)CrossRefGoogle Scholar
  32. 32.
    Kemble E.C., Zener C.: Phys. Rev. 33, 512 (1929)CrossRefGoogle Scholar
  33. 33.
    J.C. Slater, Quantum Theory of Molecules and Solids, vol. 1. Electronic Structure of Molecules (McGraw-Hill, New York, 1963), Appendix 6Google Scholar
  34. 34.
    Yasui J., Saika A.: J. Chem. Phys. 76, 468 (1982)CrossRefGoogle Scholar
  35. 35.
    J. Hinze, F. Biegler-König, in Self-consistent field. Theory and Applications, ed. by R. Carbó, M. Klobukowski (Elsevier, Amsterdam, 1990), p. 405Google Scholar
  36. 36.
    Harris F.E.: Int. J. Quant. Chem. 88, 701 (2002)CrossRefGoogle Scholar
  37. 37.
    Vanne Y.V., Saenz A.: J. Phys. B 37, 4101 (2004)CrossRefGoogle Scholar
  38. 38.
    Takagi H., Nakamura H.: J. Phys. B 13, 2619 (1980)CrossRefGoogle Scholar
  39. 39.
    El-Aasser M.A., Abdel-Raouf M.A.: J. Phys. B 40, 1801 (2007)CrossRefGoogle Scholar
  40. 40.
    P.J. Davis, in Gamma function and related functions, ed. by M. Abramowitz, I.A. Stegun. Handbook of Mathematical Functions (Dover, New York, 1965), p. 253Google Scholar
  41. 41.
    Brown G.J.N.: J. Phys. A 28, 2297 (1995)CrossRefGoogle Scholar
  42. 42.
    Watson G.N.: Proc. Lond. Math. Soc. 17, 241 (1918)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Atomic Physics Division, Department of Atomic Physics and Luminescence, Faculty of Applied Physics and MathematicsGdańsk University of TechnologyGdanskPoland

Personalised recommendations