Journal of Mathematical Chemistry

, Volume 45, Issue 2, pp 471–477 | Cite as

GrInvIn in a nutshell

  • Adriaan Peeters
  • Kris Coolsaet
  • Gunnar Brinkmann
  • Nicolas Van Cleemput
  • Veerle Fack
Original Paper

Abstract

GrInvIn (Graph Invariant Investigator) is a software framework for teaching graph theory and for research in graph theory and graph theoretic chemistry. It enables users to construct graphs, compute invariants (e.g. topological indices in chemistry) and investigate relations between these concepts. The design of GrInvIn emphasizes easy usage and makes use of software engineering techniques that enable the user to easily extend the system (e.g. by adding new topological indices to investigate).

Keywords

Graph Topological index Graph invariant Conjecture Software framework 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Caporossi G., Hansen P.: Discrete Math. 212(1–2), 29–44 (2000)CrossRefGoogle Scholar
  2. 2.
    Y. Carbonneaux, J.-M. Laborde, R.M. Madani, in: Graph Drawing, ed. by F.-J. Brandenburg (Springer, Berlin, 1996) pp. 123–126Google Scholar
  3. 3.
    E. DeLaVina, in: Graphs and Discovery, ed. by S. Fajtlowicz, P.W. Fowler, P. Hansen, M.F. Janowitz, F.S. Roberts (American Mathematical Society, Rhode Island, 2005) pp. 81–118Google Scholar
  4. 4.
    E. DeLaVina, in: Graphs and Discovery, ed. by S. Fajtlowicz, P.W. Fowler, P. Hansen, M.F. Janowitz, F.S. Roberts (American Mathematical Society, Rhode Island, 2005) pp. 71–79Google Scholar
  5. 5.
    D. Cvetković, S. Simić, in: Graphs and Discovery, ed. by S. Fajtlowicz, P.W. Fowler, P. Hansen, M.F. Janowitz, F.S. Roberts (American Mathematical Society, Rhode Island, 2005) pp. 39–70Google Scholar
  6. 6.
    Mélot H.: Discrete Appl. Math. 156(10), 1875–1891 (2008)CrossRefGoogle Scholar
  7. 7.
    J.W. Berry, N. Dean, M.K. Goldberg, G.~E. Shannon, S. Skiena, in: Graph Drawing, ed. by G.D. Battista (Springer, Berlin, 1997) pp. 425–437Google Scholar
  8. 8.
    D. Stevanović, V. Brankov, D. Cvetković, S. Simić. newGRAPH. http://www.mi.sanu.ac.yu/newgraph/
  9. 9.
    R.D. Pepper, in: Graphs and Discovery, ed. by S. Fajtlowicz, P.W. Fowler, P. Hansen, M.F. Janowitz, F.S. Roberts (American Mathematical Society, Rhode Island, 2005) pp. 341–349Google Scholar
  10. 10.
    DeLaVina E.: Graph Theory Notes of New York XLII(3, 26–30 (2002)Google Scholar
  11. 11.
    Brinkmann G., Steffen E.: Ars Combinatoria 50, 292–296 (1998)Google Scholar
  12. 12.
    McKay B.D.: J. Algorithm 26, 306–324 (1998)CrossRefGoogle Scholar
  13. 13.
    Brinkmann G., Caporossi G., Hansen P.: J. Algorithms. 45, 155–166 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Adriaan Peeters
    • 1
  • Kris Coolsaet
    • 1
  • Gunnar Brinkmann
    • 1
  • Nicolas Van Cleemput
    • 1
  • Veerle Fack
    • 1
  1. 1.Applied Mathematics and Computer ScienceGhent UniversityGhentBelgium

Personalised recommendations