Advertisement

Journal of Mathematical Chemistry

, Volume 45, Issue 2, pp 406–416 | Cite as

On decompositions of leapfrog fullerenes

  • Klavdija Kutnar
  • Dragan MarušičEmail author
  • Damir Vukičević
Original Paper

Abstract

It is shown that given a fullerene F with the number of vertices n divisible by 4, and such that no two pentagons in F share an edge, the corresponding leapfrog fullerene Le(F) contains a long cycle of length 3n − 6 missing out only one hexagon.

Keywords

Graph Fullerene graph Cyclic edge-connectivity Perfect matchings Leapfrog operation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Da Ross T., Prato M.: Chem. Commun. 8, 663 (1999)CrossRefGoogle Scholar
  2. 2.
    Planeix J.M., Coustel N., Coq B., Brotons V., Kumbhar P.S., Dutartre R., Geneste P., Bernier P., Ajayan P.M.: J. Am. Chem. Soc. 116, 7935 (1994)CrossRefGoogle Scholar
  3. 3.
    Kratschmer W., Lamb L., Fostiropoulos K., Huffman D.: Nature 347, 354 (1990)CrossRefGoogle Scholar
  4. 4.
    Kroto H.W., Heath J.R., O’Brien S.C., Curl R.F., Smalley R.E.: Nature 318, 162 (1985)CrossRefGoogle Scholar
  5. 5.
    Zhang H., Zhang F.: J. Math. Chem. 30, 343 (2001)CrossRefGoogle Scholar
  6. 6.
    Lukovits I., Graovac A., Kálmán E., Kaptay G., Nagy P.I., Nikolić S., Sytchev J., Trinajstić N.: J. Chem. Inf. Comput. Sci. 43, 609 (2003)Google Scholar
  7. 7.
    Rogers K.M., Fowler P.W.: J. Chem. Soc. Perkin Trans. 2, 18 (2001)Google Scholar
  8. 8.
    Yan W., Zhang F.: Adv. Appl. Math. 32, 175 (2004)CrossRefGoogle Scholar
  9. 9.
    Došlić T.: J. Math. Chem. 41, 183 (2008)Google Scholar
  10. 10.
    Došlić T.: J. Math. Chem. 24, 359 (1998)CrossRefGoogle Scholar
  11. 11.
    Vukičević D., Kroto H.W., Randić M.: Croat. Chem. Acta 78, 223 (2005)Google Scholar
  12. 12.
    M. Randič, H.W. Kroto, D. Vukičević, Kekulé structures of Buckminsterfullerene. Adv. Quantum Chem. (submitted)Google Scholar
  13. 13.
    Vukičević D., Randić M.: Chem. Phys. Lett. 401, 446 (2005)CrossRefGoogle Scholar
  14. 14.
    Vukičević D., Gutman I., Randić M.: Croat. Chem. Acta 79, 429 (2006)Google Scholar
  15. 15.
    D. Vukičević, Total forcing number of Buckminsterfullerene. Int. J. Pure Appl. Chem. (accepted for publication)Google Scholar
  16. 16.
    Payan C., Sakarovitch M.: Cahiers du Centre D’etudes de Recherche Operationelle 17, 319 (1975)Google Scholar
  17. 17.
    F. Harary., Graph Theory (Addison-Wesley, Reading, 1969)Google Scholar
  18. 18.
    Došlić T.: J. Math. Chem. 31, 187 (2002)CrossRefGoogle Scholar
  19. 19.
    Došlić T.: J. Math. Chem. 33, 103 (2003)CrossRefGoogle Scholar
  20. 20.
    Kutnar K., Marušič D.: Discrete. Appl. Math 156, 1661 (2008)CrossRefGoogle Scholar
  21. 21.
    Marušič D.: J. Chem. Inf. Model. 47, 732 (2007)CrossRefGoogle Scholar
  22. 22.
    Diudea M.V., John P.E., Graovac A., Primorac M., Pisanski T.: Croat. Chem. Acta 76, 153 (2003)Google Scholar
  23. 23.
    Vizitiu A.E., Diudea M.V., Nikolić S., Janežič D.: J. Chem. Inf Model 46, 2574 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Klavdija Kutnar
    • 1
  • Dragan Marušič
    • 1
    • 2
    Email author
  • Damir Vukičević
    • 3
  1. 1.University of PrimorskaKoperSlovenia
  2. 2.IMFMUniversity of LjubljanaLjubljanaSlovenia
  3. 3.Faculty of ScienceUniversity of SplitSplitCroatia

Personalised recommendations