Formation and control of Turing patterns and phase fronts in photonics and chemistry

OriginalPaper

Abstract

We review the main mechanisms for the formation of regular spatial structures (Turing patterns) and phase fronts in photonics and chemistry driven by either diffraction or diffusion. We first demonstrate that the so-called ‘off-resonance’ mechanism leading to regular patterns in photonics is a Turing instability. We then show that negative feedback techniques for the control of photonic patterns based on Fourier transforms can be extended and applied to chemical experiments. The dynamics of phase fronts leading to locked lines and spots are also presented to outline analogies and differences in the study of complex systems in these two scientific disciplines.

Keywords

Photonics Chemistry Turing patterns Control Phase fronts Localized states Spots 

References

  1. 1.
    Turing A.M. (1952) Philos. Trans. R. Soc. London B 237: 37CrossRefGoogle Scholar
  2. 2.
    Cross M.C., Hohenberg P.C. (1993) Rev. Mod. Phys. 65: 851CrossRefGoogle Scholar
  3. 3.
    G.K. Harkness, G.-L. Oppo, W.J. Firth, Optics and Photonics News (1998), p. 44Google Scholar
  4. 4.
    Murray J.D. (1989) Mathematical Biology. Springer, BerlinGoogle Scholar
  5. 5.
    V. Castets, E. Dulos, J. Boissonade, P. de Kepper, Phys. Rev. Lett. 64, 2953 (1990); P. de Kepper, V. Castets, E. Dulos, J. Boissonade, Physica D 49, 161 (1991); J. Boissonade, E. Dulos, P. de Kepper, in Chemical Waves and Patterns ed. by R. Kapral, K. Showalter (Kluwer, Dordrecht, 1995) p. 221Google Scholar
  6. 6.
    Q. Ouyang, H.L. Swinney, Nature 352, 610 (1991); Q. Ouyang, H.L. Swinney, in Chemical Waves and Patterns ed. by R. Kapral, K. Showalter (Kluwer, Dordrecht, 1995) p. 269Google Scholar
  7. 7.
    Muller S.C., Ross J. (2003) J. Phys. Chem. A 107: 7997CrossRefGoogle Scholar
  8. 8.
    Flicker M., Ross J. (1973) J. Phys. Chem. 60: 3458Google Scholar
  9. 9.
    Vanag V.K., Epstein I. (2001) Phys. Rev. Lett. 87: 228301CrossRefGoogle Scholar
  10. 10.
    Lugiato L.A., Lefever R. (1987) Phys. Rev. Lett. 58: 2209CrossRefGoogle Scholar
  11. 11.
    Oppo G.-L., Brambilla M., Lugiato L.A. (1994) Phys. Rev. A 49: 2028CrossRefGoogle Scholar
  12. 12.
    Oppo G.-L., Scroggie A.J., Firth W.J. (2001) Phys. Rev. E 63: 066209CrossRefGoogle Scholar
  13. 13.
    Staliunas K., Sanchez-Morcillo V.J. (2000) Opt. Comm. 177: 389CrossRefGoogle Scholar
  14. 14.
    Giusfredi G. et al (1988) J. Opt. Soc. Am. B 5: 1181CrossRefGoogle Scholar
  15. 15.
    Grynberg G., Le Bihan E., Verkerk P., Simoneau P., Leite J.R., Bloch D., Le Boiteux S., Ducloy M. (1988) Opt. Comm. 67: 363CrossRefGoogle Scholar
  16. 16.
    Petrossian A., Pinard M., Maitre A., Courtois J.Y., Grynberg G. (1992) Eur. Phys. Lett. 18: 689CrossRefGoogle Scholar
  17. 17.
    Ackemann T., Lange W. (1994) Phys. Rev. A 50: R4468CrossRefGoogle Scholar
  18. 18.
    T. Honda, Opt. Lett. 18, 598 (1993); T. Honda, Opt. Lett. 20, 851 (1995); T. Honda, H. Matsumoto, Opt. Lett. 20, 1755 (1995); A.V. Mamaev, M. Saffman, Opt. Lett. 22, 283 (1997); C. Denz, M. Schwab, M. Sedlatsheck, T. Tschudi, T. Honda, J. Opt. Soc. Am. B 15, 2057 (1998)Google Scholar
  19. 19.
    R. McDonald, H.J. Eichler, Opt. Comm. 89, 289 (1992); M. Tamburrini, M. Boanvita, S. Wabnitz, E. Santamato, Opt. Lett. 18, 855 (1993)Google Scholar
  20. 20.
    B. Thuring, R. Neubecker, T. Tschudi, Opt. Comm. 102, 111 (1993); E. Papmaploni, S. Residori, F.T. Arecchi, Opt. Lett. 24, 647 (1993)Google Scholar
  21. 21.
    W.J. Firth, J. Mod. Opt. 37, 151 (1990); G. D’Alessandro, W.J. Firth, Phys. Rev. Lett. 66, 2597 (1991); G. D’Alessandro, W.J. Firth, Phys. Rev. A 46, 537 (1992)Google Scholar
  22. 22.
    T. Ackemann, Y. Logvin, A. Heuer, W. Lange, Phys. Rev. Lett. 75, 3450 (1995); W. Lange, Y. Logvin, T. Ackemann, Physica D 96, 230 (1996); T. Ackemann, W. Lange, App. Phys. B 72, 21 (2001)Google Scholar
  23. 23.
    Maxwell J.C. (1868) Proc. R. Soc. London 16: 279Google Scholar
  24. 24.
    Martin R., Scroggie A.J., Oppo G.-L., Firth W.J. (1996) Phys. Rev. Lett. 77: 4007CrossRefGoogle Scholar
  25. 25.
    Harkness G.K., Oppo G.-L., Martin R., Scroggie A.J., Firth W.J. (1998) Phys. Rev. A 58: 2577CrossRefGoogle Scholar
  26. 26.
    Lugiato L.A., Oldano C. (1988) Phys. Rev. A 37: 3896CrossRefGoogle Scholar
  27. 27.
    Firth W.J., Scroggie A.J. (1994) Europhys. Lett. 26: 521CrossRefGoogle Scholar
  28. 28.
    K. Harkness, R. Martin, G.-L. Oppo, A.J. Scroggie, W.J. Firth (1999) Phys. Rev. Lett. 82: 2406CrossRefGoogle Scholar
  29. 29.
    A.V. Mamaev, M. Saffman, Phys. Rev. Lett. 80, 3499 (1998); S.J. Jensen, M. Schwab, C. Denz, Phys. Rev. Lett. 81, 1614 (1998); Y. Hayasaki, H. Yamamoto, N. Nishida, Opt. Comm. 187, 49 (2001)Google Scholar
  30. 30.
    Harkness G.K., Oppo G.-L., Benkler E., Kreuzer M., Neubecker R., Tschudi T. (1999) J. Opt. B 1: 177Google Scholar
  31. 31.
    Benkler E., Kreuzer M., Neubecker R., Tschudi T. (2000) Phys. Rev. Lett. 84: 879CrossRefGoogle Scholar
  32. 32.
    R. Neubecker, E. Benkler, Phys. Rev. E 65, 066206 (2002); R. Neubecker, E. Benkler, R. Martin, G.-L. Oppo, Phys. Rev. Lett. 91, 113903 (2003)Google Scholar
  33. 33.
    T. Ackemann, B. Giese, B. Shapers, W. Lange, J. Opt. B 1, 70 (1999); R. Herrero, E. Große Westhoff, A. Aumann, T. Ackemann, Y. Logvin, W. Lange, Phys. Rev. Lett. 82, 4627 (1999)Google Scholar
  34. 34.
    Mikhailov A.S., Showalter K. (2006) Phys. Rep. 425: 79CrossRefGoogle Scholar
  35. 35.
    E. Mihaliuk, T. Sakurai, F. Chirila, K. Showalter, Phys. Rev. E 65, 0656021 (2002); V. Zykov, K. Showalter, Phys. Rev. Lett. 94, 0683021 (2005)Google Scholar
  36. 36.
    H.H. Rotermund, J. Electron. Spectrosc. Relat. Phenom. 99, 41 (1999); C. Beta, M.G. Moula, A.S. Mikhailov, H.H. Rotermund, G. Ertl, Phys. Rev. Lett. 93, 1883021 (2004)Google Scholar
  37. 37.
    J.D. Gunton, M. San Miguel, P. Sahni, in Phase Transitions and Critical Phenomena, ed. by C. Domb, J. Lebowitz (Academic Press, New York, 1983)Google Scholar
  38. 38.
    Bray A. (1994) Adv. Phys. 43: 357CrossRefGoogle Scholar
  39. 39.
    Allen S.M., Cahn J.W. (1979) Acta Metall. 27: 1085CrossRefGoogle Scholar
  40. 40.
    R. Kapral, G.-L. Oppo, Physica D 23, 455 (1986); G.-L. Oppo, R. Kapral, Phys. Rev. A 36, 5820 (1987)Google Scholar
  41. 41.
    It may seem strange that ‘diffraction-like’ terms appear in the description of reaction–diffusion systems. For a derivation of the complex Ginzburg-Landau equation from the Brusselator model see Y. Kuramoto, Chemical Oscillations, Waves and Turbulence (Springer, New York, 1984)Google Scholar
  42. 42.
    Hemming C., Kapral R. (2002) Physca A 306: 199CrossRefGoogle Scholar
  43. 43.
    Rudzick O., Mikhailov A.S. (2006) Phys. Rev. Lett. 96: 018302CrossRefGoogle Scholar
  44. 44.
    V. Petrov, Q. Ouyang, H.L. Swinney, Nature 388, 655 (1997); A.L. Lin, A. Hagberg, A. Ardelea, M. Bertram, H.L. Swinney, E. Meron, Phys. Rev. E 62, 3790 (2000)Google Scholar
  45. 45.
    P. Coullet, C. Elphick, D. Repaux, Phys. Rev. Lett. 58, 431 (1987); P. Coullet, Int. J. Bif. Chaos 12, 2445 (2002)Google Scholar
  46. 46.
    Oppo G.-L., Scroggie A.J., Firth W.J. (1999) J. Opt. B 1: 133Google Scholar
  47. 47.
    Firth W.J., Scroggie A.J. (1996) Phys. Rev. Lett. 76: 1623CrossRefGoogle Scholar
  48. 48.
    Scroggie A.J., Jeffers J., McCartney G., Oppo G.-L. (2005) Phys. Rev. E 71: 046602CrossRefGoogle Scholar
  49. 49.
    Pesch M., Lange W., Gomila D., Ackemann T., Firth W.J., Oppo G.-L. (2007) Phys. Rev. Lett. 99: 153902CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.SUPA and Department of Physics, Institute of Complex Systems at StrathclydeUniversity of StrathclydeGlasgowUK

Personalised recommendations