Advertisement

Thoughts on lattice knot statistics

  • E. J. Janse van RensburgEmail author
Original Paper

Abstract

Lattice knot statistics, or the study of knotted polygons in the cubic lattice, gained momentum in 1988 when the Frisch-Wasserman-Delbruck conjecture was proven by Sumners and Whittington (J Phys A Math Gen 21:L857–861, 1988), and independently in 1989 by Pippenger (Disc Appl Math 25:273–278, 1989). In this paper, aspects of lattice knot statistics are reviewed. The basic ideas underlying the study of knotted lattice polygons are presented, and the many open problem are posed explicitly. In addition, the properties of knotted polygons in a confining slab geometry are explained, as well as the Monte Carlo simulation of knotted polygons in \({{\mathbb Z}^3}\) and in a slab geometry. Finally, the mean behaviour of lattice knots in a slab are discussed as a function of the knot type.

Keywords

Lattice knots Ring polymer Connective constant Statistical topology 

References

  1. 1.
    Aragão de Carvalho C., Caracciolo S.: Phys. Rev. B 27, 1635–1645 (1983)CrossRefGoogle Scholar
  2. 2.
    Aragão de Carvalho C., Caracciolo S.: J. Fröhlich, Nucl. Phys. B 215(FS7), 209–248 (1983)CrossRefGoogle Scholar
  3. 3.
    Berg B., Foester D.: Random paths and random surfaces on a digital computer. Phys. Lett. 106, 323–326 (1981)Google Scholar
  4. 4.
    N. Clisby, R. Liang, G. Slade, Preprint (2007)Google Scholar
  5. 5.
    de Gennes P.G.: Scaling Concepts in Polymer Physics. Cornell University Press, Ithaca (1979)Google Scholar
  6. 6.
    Delbruck M.: Proc. Symp. Appl. Math. 14, 55–63 (1962)Google Scholar
  7. 7.
    Frisch H.L., Wasserman E.: J. Amer. Chem. Soc. 83, 3789–3795 (1961)CrossRefGoogle Scholar
  8. 8.
    Hammersley J.M.: Math. Proc. Camb. Phil. Soc. 58, 235–238 (1961)CrossRefGoogle Scholar
  9. 9.
    Hammersley J.M., Morton K.W.: J. Roy. Stat.l Soc. B16, 76–79 (1954)Google Scholar
  10. 10.
    Hara T., Slade G.: Rev. Math. Phys. 4, 235–327 (1990)CrossRefGoogle Scholar
  11. 11.
    Jansevan Rensburg E.J.: J. Phys. A Math. Gen. 25, 1031–1042 (1992)CrossRefGoogle Scholar
  12. 12.
    E.J. Janse van Rensburg, The Statistical Mechanics of Interacting Walks, Polygons, Animals and Vesicles. Oxford Lect. Ser. Math. Appl., vol. 18 (Oxford University Press, Oxford, 2000)Google Scholar
  13. 13.
    Jansevan Rensburg E.J.: J. Stat. Mech. Theo. Exper. 03, P03001 (2007)CrossRefGoogle Scholar
  14. 14.
    Jansevan Rensburg E.J., Orlandini E., Sumners D.W., Tesi M.C., Whittington S.G.: J. Knot Theo. Ram. 6, 31–44 (1996)CrossRefGoogle Scholar
  15. 15.
    Jansevan Rensburg E.J., Orlandini E., Whittington S.G.: J. Phys. A Math. Gen. 39, 13869–13902 (2006)CrossRefGoogle Scholar
  16. 16.
    Jansevan Rensburg E.J., Whittington S.G.: J. Phys. A Math. Gen. 23, 3573–3590 (1990)CrossRefGoogle Scholar
  17. 17.
    Jansevan Rensburg E.J., Whittington S.G.: J. Phys. A Math. Gen. 24, 5553–5567 (1991)CrossRefGoogle Scholar
  18. 18.
    Jansevan Rensburg E.J., Whittington S.G.: J. Phys. A Math. Gen. 24, 3935–3948 (1991)CrossRefGoogle Scholar
  19. 19.
    Jensen I.: J. Phys. A Math. Gen. 36, 5731–5745 (2003)CrossRefGoogle Scholar
  20. 20.
    Kesten H.: J. Math. Phys. 4, 960–969 (1963)CrossRefGoogle Scholar
  21. 21.
    Kesten H.: J. Math. Phys. 5, 1128–1137 (1964)CrossRefGoogle Scholar
  22. 22.
    Li B., Madras N., Sokal A.D.: J. Stat. Phys. 80, 661–754 (1995)CrossRefGoogle Scholar
  23. 23.
    N. Madras, in Random Walks, Brownian Motion and Interacting Particle Systems, ed. by R. Durrett, H. Kesten (Birkhauser, Boston, 1991)Google Scholar
  24. 24.
    Madras N.: J. Stat. Phys. 78, 681–699 (1995)CrossRefGoogle Scholar
  25. 25.
    Madras N., Slade G.: The Self-avoiding Walk. Birkhäuser, Boston (1993)Google Scholar
  26. 26.
    Madras N., Sokal A.D.: J. Stat. Phys. 47, 573–595 (1987)CrossRefGoogle Scholar
  27. 27.
    Metropolis M., Rosenbluth A.W., Rosenbluth M.N., Teller A.H., Teller E.: J. Chem. Phys. 23, 1087–1092 (1953)CrossRefGoogle Scholar
  28. 28.
    Nienhuis B.: Phys. Rev. Lett. 49, 1062–1065 (1982)CrossRefGoogle Scholar
  29. 29.
    Orlandini E., Tesi M.C., Jansevan Rensburg E.J., Whittington S.G.: J. Phys. A Math. Gen. 29, L299–303 (1996)CrossRefGoogle Scholar
  30. 30.
    Orlandini E., Tesi M.C., Jansevan Rensburg E.J., Whittington S.G.: J. Phys. A Math. Gen. 30, L693–698 (1997)CrossRefGoogle Scholar
  31. 31.
    Orlandini E., Tesi M.C., Jansevan Rensburg E.J., Whittington S.G.: J. Phys. A Math. Gen. 31, 5953–5967 (1998)CrossRefGoogle Scholar
  32. 32.
    Pippenger N.: Disc. Appl. Math. 25, 273–278 (1989)CrossRefGoogle Scholar
  33. 33.
    Reidemeister K.: Knotentheorie. Springer, Berlin (1932)Google Scholar
  34. 34.
    Soteros C.E., Sumners D.W., Whittington S.G.: Math. Proc. Camb. Phil. Soc. 111, 75–91 (1992)CrossRefGoogle Scholar
  35. 35.
    Soteros C.E., Whittington S.G.: J. Phys. A Math. Gen. 21, L857–861 (1988)CrossRefGoogle Scholar
  36. 36.
    Sumners D.W., Whittington S.G.: J. Phys. A Math. Gen. 21, 1689–1694 (1988)CrossRefGoogle Scholar
  37. 37.
    Tesi M.C., Jansevan Rensburg E.J., Orlandini E., Whittington S.G.: J. Phys. A Math. Gen. 30, 5179–5194 (1997)CrossRefGoogle Scholar
  38. 38.
    S.G. Whittington, E.J. Janse van Rensburg, Math. Mod. Sci. Comp. 2, 741–746 (1992) Proc. Eighth Int. Conf. Math. Comp. Mod.Google Scholar
  39. 39.
    Whittington S.G., Soteros C.E.: Isreal J. Chem. 31, 127–133 (1991)Google Scholar
  40. 40.
    Whittington S.G., Soteros C.E.: Macromol. Rep. A 29(Suppl. 2), 195–199 (1992)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsYork UniversityTorontoCanada

Personalised recommendations