Journal of Mathematical Chemistry

, Volume 45, Issue 3, pp 563–597 | Cite as

The general concept of signal–noise separation (SNS): mathematical aspects and implementation in magnetic resonance spectroscopy

Original Paper


Magnetic resonance spectroscopy (MRS) and spectroscopic imaging (MRSI) are increasingly recognized as potentially key modalities in cancer diagnostics. It is, therefore, urgent to overcome the shortcomings of current applications of MRS and MRSI. We explain and substantiate why more advanced signal processing methods are needed, and demonstrate that the fast Padé transform (FPT), as the quotient of two polynomials, is the signal processing method of choice to achieve this goal. In this paper, the focus is upon distinguishing genuine from spurious (noisy and noise-like) resonances; this has been one of the thorniest challenges to MRS. The number of spurious resonances is always several times larger than the true ones. Within the FPT convergence is achieved through stabilization or constancy of the reconstructed frequencies and amplitudes. This stabilization is a veritable signature of the exact number of resonances. With any further increase of the partial signal length N, towards the full signal length N, i.e., passing the stage at which full convergence has been reached, it is found that all the fundamental frequencies and amplitudes “stay put”, i.e., they still remain constant. Moreover, machine accuracy is achieved here, proving that when the FPT is nearing convergence, it approaches straight towards the exact result with an exponential convergence rate (the spectral convergence). This proves that the FPT is an exponentially accurate representation of functions customarily encountered in spectral analysis in MRS and beyond. The mechanism by which this is achieved, i.e., the mechanism which secures the maintenance of stability of all the spectral parameters and, by implication, constancy of the estimate for the true number of resonances is provided by the so-called pole-zero cancellation, or equivalently, the Froissart doublets. This signifies that all the additional poles and zeros of the Padé spectrum will cancel each other, a remarkable feature unique to the FPT. The FPT is safe-guarded against contamination of the final results by extraneous resonances, since each pole due to spurious resonances stemming from the denominator polynomial will automatically coincide with the corresponding zero of the numerator polynomial, thus leading to the pole-zero cancellation in the polynomial quotient of the FPT. Such pole-zero cancellations can be advantageously exploited to differentiate between spurious and genuine content of the signal. Since these unphysical poles and zeros always appear as pairs in the FPT, they are viewed as doublets. Therefore, the pole-zero cancellation can be used to disentangle noise as an unphysical burden from the physical content in the considered signal, and this is the most important usage of the Froissart doublets in MRS. The general concept of signal–noise separation (SNS) is thereby introduced as a reliable procedure for separating physical from non-physical information in MRS, MRSI and beyond.





Advanced Method for Accurate Robust and Efficient Spectral fitting




Arbitrary units


Benign prostatic hypertrophy








Computerized tomography


Free induction decay


Fast Fourier transform


Fast Padé transform


Gamma amino butyric acid










Proton magnetic resonance spectroscopy


Hankel–Lanczos Singular Value Decomposition




Isoleucine (Iso)




Linear Combination of Model in vitro Spectra








Magnetic resonance


Magnetic resonance imaging


Magnetic resonance spectroscopy


Magnetic resonance spectroscopic imaging




N-acetyl aspartate


N-acetyl aspartyl glutamate


Nuclear magnetic resonance


Padé approximant






Positron emission tomography


Parts per million


Prostate specific antigen


Radiation therapy


Signal-to-noise ratio


Signal–noise separation




Echo time






Variable Projection Method


Wet weight


One dimensional


Two dimensional


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bezabeh T., Odlum O., Nason R., Kerr P., Sutherland D., Pael R. (2005) I.C.P. Smith, Prediction of treatment response in head and neck cancer by magnetic resonance spectroscopy. Am. J. Neuroradiol. 26: 2108Google Scholar
  2. 2.
    Bolan P.J., Nelson M.T.,Yee D., Garwood M. (2005) Imaging in breast cancer: magnetic resonance spectroscopy. Breast Cancer Res. 7: 149CrossRefGoogle Scholar
  3. 3.
    J. Evelhoch, M. Garwood, D. Vigneron, M. Knopp, D. Sullivan, A.Menkens, et al., Expanding the use of magnetic resonance in the assessment of tumor response to therapy. Cancer Res. 65, 7041 (2005)CrossRefGoogle Scholar
  4. 4.
    Hollingworth W., Medina L.S., Lenkinski R.E., Shibata D.K., Bernal B., Zurakowski D., Comstock B., Jarvik J.G. (2006) A systematic literature review of magnetic resonance spectroscopy for the characterization of brain tumors. Am. J. Neuroradiol. 27: 1404Google Scholar
  5. 5.
    Hricak H. (2005) MR imaging and MR spectroscopic imaging in the pre-treatment evaluation of prostate cancer. Br. J. Radiol. 78: S103CrossRefGoogle Scholar
  6. 6.
    Huzjan R., Sala E., Hricak H. (2005) Magnetic resonance imaging and magnetic resonance spectroscopic imaging of prostate cancer. Nat. Clin. Pract. Urol. 2: 434CrossRefGoogle Scholar
  7. 7.
    King A.D., Yeung D.K.W., Ahuja A.T., Tse G.M.K., Yuen H.Y., Wong K.T., van Hasselt A.C. (2005) Salivary gland tumors at in vivo MR spectroscopy. Radiology 237: 563CrossRefGoogle Scholar
  8. 8.
    King A.D., Yeung D.K.W., Ahuja A.T., Tse G.M.K., Chan A.B.W., Lam S.S.L., van Hasselt A.C.(2005) In vivo 1H MR spectroscopy of thyroid cancer. Eur. J. Radiol. 54: 112CrossRefGoogle Scholar
  9. 9.
    Kwock L., Smith J.K., Castillo M., Ewend M.G., Collichio F., Morris D.E., Bouldin T.W., Cush S. (2006)Clinical role of proton magnetic resonance spectroscopy in oncology: brain, breast and prostate cancer. Lancet Oncol. 7: 859CrossRefGoogle Scholar
  10. 10.
    Katz S., Rosen M. (2006) MR imaging and MR spectroscopy in prostate cancer management. Radiol. Clin. N. Am. 44: 723CrossRefGoogle Scholar
  11. 11.
    Mankoff D. (2005) Imaging in breast cancer—revisited. Breast Cancer Res. 7: 276CrossRefGoogle Scholar
  12. 12.
    Payne G.S., Leach M.O. (2006) Applications of magnetic resonance spectroscopy in radiotherapy treatment planning. Br. J. Radiol. 79: S16CrossRefGoogle Scholar
  13. 13.
    Sibtain N.A., Howe F.A., Saunders D.E. (2007) The clinical value of proton magnetic resonance spectroscopy in adult brain tumours. Clin. Radiol. 62: 109CrossRefGoogle Scholar
  14. 14.
    Belkić K. (2004) Molecular Imaging through Magnetic Resonance for Clinical Oncology. Cambridge International Science Publishing, CambridgeGoogle Scholar
  15. 15.
    Belkić K., Dž. Belkić (2004) Spectroscopic imaging through magnetic resonance for brain tumour diagnostics. J. Comp. Method Sci. Eng. 4: 157Google Scholar
  16. 16.
    Nelson S. (2003) Multivoxel magnetic resonance spectroscopy of brain tumors. Mol. Cancer Ther. 2: 497Google Scholar
  17. 17.
    Howe F.A., Opstad K.S. (2003) 1 H spectroscopy of brain tumors and masses. NMR Biomed. 16, 123CrossRefGoogle Scholar
  18. 18.
    Dhingsa R., Qayyum A., Coakley F.V., Lu Y., Jones K.D., Swanson M.G., Carroll P.R., Hricak H., J. Kurhanewicz (2004) Prostate cancer localization with endorectal MR imaging and MR spectroscopic imaging: effect of clinical data on reader accuracy. Radiology 230: 215CrossRefGoogle Scholar
  19. 19.
    Bartella L., Morris E.A., Dershaw D.D., Liberman L., Thakur S.B., Moskowitz C., Guido J., Huang W. (2006) Proton MR spectroscopy with choline peak as malignancy marker improves positive predictive value for breast cancer diagnosis: preliminary study. Radiology 239: 686CrossRefGoogle Scholar
  20. 20.
    Jagannathan N.R., Kumar M., Seenu V., Coshic O., Dwivedi S.N., Julka P.K., Srivastava A., Rath G.K. (2001) Evaluation of total choline from in-vivo volume localized proton MR spectroscopy and its response to neoadjuvant chemotherapy in locally advanced breast cancer. Br. J. Cancer 84: 1016CrossRefGoogle Scholar
  21. 21.
    Meisamy S., Bolan P.J., Baker E.H., Bliss R.L., Gulbahce E., Everson L.I. Nelson M.T., Emory T.H., Tuttle T.M., Yee D., Garwood M. (2004) Neoadjuvant chemotherapy of locally advanced breast cancer: predicting response with in vivo 1H MR spectroscopy—a pilot study at 4T. Radiology 233, 424CrossRefGoogle Scholar
  22. 22.
    Stretch J.R., Somorjai R., Bourne R., Hsiao E., Scolyer R.A., Dolenko B., Thompson J.F., Mountford C.E., Lean C.L. (2005) Melanoma metastases in regional lymph nodes are accurately detected by proton magnetic resonance spectroscopy of fine-needle aspirate biopsy samples. Ann. Surg. Oncol. 12: 943CrossRefGoogle Scholar
  23. 23.
    Belkić K. (2004) MR spectroscopic imaging in breast cancer detection: possibilities beyond the conventional theoretical framework for data analysis. Nucl. Instr. Method Phys. Res. A 525: 313CrossRefGoogle Scholar
  24. 24.
    Belkić K. (2004) Current dilemmas and future perspectives for breast cancer screening with a focus upon optimization of MR spectroscopic imaging by advances in signal processing. Isr. Med. Assoc. J. 6: 610Google Scholar
  25. 25.
    Gribbestad I., Sitter B., Lundgren S., Krane J., Axelson D. (1999) Metabolite composition in breast tumors examined by roton nuclear MR spectroscopy. Anticancer Res. 19: 1737Google Scholar
  26. 26.
    Katz-Brull R., Lavin P.T., Lenkinski R.E. (2002) Clinical utility of proton MR spectroscopy in characterizing breast lesions. J. Natl. Cancer Inst. 94:1197Google Scholar
  27. 27.
    Kaminogo M., Ishimaru H., Morikawa M., Ochi M., Ushijima R., Tani M., Matsuo Y., Kawakubo J., Shibata S. (2001) iagnostic potential of short echo time MR spectroscopy of gliomas with single-voxel and point-resolved spatially localised proton spectroscopy of brain. Neuroradiology 43:353CrossRefGoogle Scholar
  28. 28.
    Griffiths J., Tate A.R., Howe F.A., Stubbs M. (2002) as part of the Multi-institutional group on MRS application to cancer. Magnetic resonance spectroscopy of cancer—practicalities of multi-centre trials and early results in non-Hodgkin’s lymphoma. Eur. J. Cancer 38: 2085CrossRefGoogle Scholar
  29. 29.
    Smith I.C., Blandford D.E. (1998), Diagnosis of cancer in humans by 1H NMR of tissue biopsies. Biochem. Cell Biol. 76: 472CrossRefGoogle Scholar
  30. 30.
    Wallace J.C., Raaphorst G.P., Somorjai R.L., Ng C.E., Fung Kee Fung M., Senterman M., Smith I.C. (1997)Classification of 1H MR spectra of biopsies from untreated and recurrent ovarian cancer using linear discriminant analysis. Magn. Reson. Med. 38: 569CrossRefGoogle Scholar
  31. 31.
    Boss E., Moolenaar S.H., Massuger L.F.A.G., Boonstra H., Engelke U.F.H., de Jong J.G.N., Wevers R.A. (2000) High-resolution proton nuclear magnetic resonance spectroscopy of ovarian cyst fluid. NMR Biomed. 13: 297CrossRefGoogle Scholar
  32. 32.
    Massuger L.F.A.G., van Vierzen P.B.J., Engelke U., Heerschap A. (1998) 1H-MR spectroscopy. A new technique to discriminate benign from malignant ovarian tumors. Cancer 82: 1726CrossRefGoogle Scholar
  33. 33.
    Belkić Dž. (2001) Fast Padé Transform (FPT) for magnetic resonance imaging and computerized tomography. Nucl. Instrum. Methods Phys. Res. A 471: 165CrossRefGoogle Scholar
  34. 34.
    Wirestam R., Ståhlberg F. (2005) Wavelet-based noise reduction for improved deconvolution of time-series data in dynamic susceptibility-contrast MRI. MAGMA 18: 113CrossRefGoogle Scholar
  35. 35.
    Belkić Dž. (2004) Quantum Mechanical Signal Processing and Spectral Analysis. Institute of Physics Publishing, BristolGoogle Scholar
  36. 36.
    Belkić Dž., Belkić K. (2005) The fast Padé transform in magnetic resonance spectroscopy for potential improvements in early cancer diagnostics. Phys. Med. Biol. 50: 4385CrossRefGoogle Scholar
  37. 37.
    Dž. Belkić, K. Belkić, Unequivocal disentangling genuine from spurious information in time signals: clinical relevance in cancer diagnostics through magnetic resonance spectroscopy. J. Math. Chem. doi:10.1007/s10910-007-9337-4
  38. 38.
    Maudsley A. (2005) Can MR spectroscopy ever be simple and effective?. Am. J. Neuroradiol. 69: 2167Google Scholar
  39. 39.
    Lanczos C. (1956) Applied Analysis. Prentice-Hall, Englewood CliffsGoogle Scholar
  40. 40.
    Istratov A.A., Virenko O.F. (1999) Exponential analysis in physical phenomena. Rev. Sci. Instrum. 70:1233CrossRefGoogle Scholar
  41. 41.
    Bottomley P.A. (1992) The trouble with spectroscopy papers. J. Magn. Reson. Imaging 2: 1CrossRefGoogle Scholar
  42. 42.
    Opstad K.S., Provencher S.W., Bell B.A., Griffiths J.R., Howe F.A. (2003) Detection of elevated glutathione in meningiomas by quantitative in vivo 1H MRS. Magn. Reson. Med. 49: 632CrossRefGoogle Scholar
  43. 43.
    Cho Y.-D., Choi G.-H., Lee S.-P., Kim J.-K. (2003) 1H-MRS metabolic patterns for distinguishing between meningiomas and other brain tumors. Magn. Reson. Imaging 21: 663CrossRefGoogle Scholar
  44. 44.
    Provencher S.W. (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra Magn. Reson Med. 30: 672CrossRefGoogle Scholar
  45. 45.
    Danielsen E., Ross B. (1999) Magnetic Resonance Spectroscopy Diagnosis of Neurological Diseases. Marcel Dekker, Inc., New YorkGoogle Scholar
  46. 46.
    Brandão L. (2004) Domingues R. MR Spectroscopy of the Brain. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  47. 47.
    Belkić Dž.(2004) Strikingly stable convergence of the fast Padé transform (FPT) for high-resolution parametric and non-parametric signal processing of Lorentzian and non-Lorentzian spectra. Nucl. Instrum. Methods Phys. Res. A 525: 366CrossRefGoogle Scholar
  48. 48.
    Belkić Dž. (2004) Error analysis through residual frequency spectra in the fast Padé transform (FPT). Nucl. Instrum. Methods Phys. Res. A 525: 379CrossRefGoogle Scholar
  49. 49.
    Belkić Dž. (2004) Analytical continuation by numerical means in spectral analysis using the fast Padé transform (FPT), Nucl. Instrum. Methods Phys. Res. A 525: 372CrossRefGoogle Scholar
  50. 50.
    Belkić Dž. (2006) Exact quantification of time signals in Padé-based magnetic resonance spectroscopy. Phys. Med. Biol. 51: 2633CrossRefGoogle Scholar
  51. 51.
    Belkić Dž (2006) Exponential convergence rate (the spectral convergence) of the fast Padé transform for exact quantification in magnetic resonance spectroscopy. Phys. Med. Biol. 51: 6483CrossRefGoogle Scholar
  52. 52.
    Dž Belkić, K. Belkić (2006) In vivo magnetic resonance spectroscopy by the fast Padé transform. Phys. Med. Biol. 51: 1049CrossRefGoogle Scholar
  53. 53.
    Callaghan M.F., Larkman D.J., Hajnal J.V. (2005) Padé methods for reconstruction and feature extraction in magnetic resonance imaging. Magn. Reson. Med. 54: 1490CrossRefGoogle Scholar
  54. 54.
    Belkić Dž, Belkić K. (2005) Fast Padé transform for optimal quantification of time signals from magnetic resonance spectroscopy. Int. J. Quant. Chem. 105:493CrossRefGoogle Scholar
  55. 55.
    Tkáč I., Andersen P., Adriany G., Merkle H., Ugurbil K., Gruetter R. (2001) In vivo 1H NMR spectroscopy of the human brain at 7T. Magn. Reson. Med. 46: 451CrossRefGoogle Scholar
  56. 56.
    Frahm J., Bruhn H., Gyngell M.L., Merboldt K.D., Hanicke W., Sauter R. (1989) Localized high-resolution proton NMR spectroscopy using stimulated echoes: initial applications to human brain in vivo. Magn. Reson. Med. 9: 79CrossRefGoogle Scholar
  57. 57.
    Belkić Dž., Belkić K. (2008) Mathematical modeling of an NMR chemistry problem in ovarian cancer diagnostics. J. Math. Chem. 43: 395CrossRefGoogle Scholar
  58. 58.
    Belkić K. (2007) Resolution performance of the fast Padé transform: potential advantages for magnetic resonance spectroscopy in ovarian cancer diagnostics. Nucl. Instrum. Meth. Phys. Res. A 580: 874Google Scholar
  59. 59.
    Belkić Dž., Belkić K. (2007) Decisive role of mathematical methods in early cancer diagnostics. J. Math. Chem. 42: 1CrossRefGoogle Scholar
  60. 60.
    Belkić Dž (2006) Fast Padé transform for exact quantification of time signals in magnetic resonance spectroscopy. Adv. Quant. Chem. 51: 157CrossRefGoogle Scholar
  61. 61.
    Pijnappel W.W.F., van den Boogaart A., de Beer R., van Ormondt D. (1992) SVD-based quantification of magnetic resonance signals. J. Magn. Reson. 97: 122Google Scholar
  62. 62.
    van der Veen J.W.C., de Beer R., Luyten P.R., van Ormondt D. (1988) Accurate quantification of in vivo 31P NMR signals using the variable projection method and prior knowledge. Magn. Reson. Med. 6: 92CrossRefGoogle Scholar
  63. 63.
    Vanhamme L., van den Boogaart A., van Haffel S. (1997) Improved method for accurate and efficient quantification of MRS data with use of prior knowledge. J. Magn. Reson. 29: 35CrossRefGoogle Scholar
  64. 64.
    Belkić Dž (2003) Strikingly stable convergence of the fast Padé transform. J. Comp. Method Sci. Eng. 3: 299Google Scholar
  65. 65.
    Dž Belkić (2003) Padé-based magnetic resonance spectroscopy (MRS). J. Comp. Method Sci. Eng. 3: 563Google Scholar
  66. 66.
    Belkić Dž., Dando P.A., Main J., Taylor H.S. (2000) Three novel high-resolution nonlinear methods for fast signal processing. J. Chem. Phys. 113: 6542CrossRefGoogle Scholar
  67. 67.
    Govindaraju V., Young K., Maudsley A.A. (2000) Proton NMR chemical shifts and coupling constants for brain metabolites. NMR Biomed. 13: 129CrossRefGoogle Scholar
  68. 68.
    Swindle P., McCredie S., Russell P., Himmelreich U., Khadra M., Lean C., Mountford C. (2003) Pathologic characterization of human prostate tissue with proton MR spectroscopy. Radiology 228: 144CrossRefGoogle Scholar
  69. 69.
    Belkić Dž. (2007) Machine accurate quantification in magnetic resonance spectroscopy. Nucl. Instrum. Method Phys. Res. A 580, 1034Google Scholar
  70. 70.
    Froissart M. (1969) Approximation de Padé: Application à la Physique des Particules Élémentaires, CNRS, RCP, Programme No. 25. Strasbourg 9: 1Google Scholar
  71. 71.
    Jolesz F. (2005) Future of magnetic resonance imaging and magnetic resonance spectroscopy in oncology. ANZ J. Surg. 75:372CrossRefGoogle Scholar
  72. 72.
    Mountford C.E., Doran S., Lean C., Russell P. (2004) Proton MRS can determine the pathology of human cancers with a high level of accuracy. Chem. Rev. 104, 3677CrossRefGoogle Scholar
  73. 73.
    Belkić Dž., Belkić K. (2006) Mathematical optimization of in vivo NMR chemistry through the fast Padé transform: potential relevance for early breast cancer detection by magnetic resonance spectroscopy. J. Math. Chem. 40, 85CrossRefGoogle Scholar
  74. 74.
    Aboagye E.O., Bhujwalla Z.M. (1999) Malignant transformation alters membrane choline phospholipid metabolism of human mammary epithelial cells. Cancer Res. 59, 80Google Scholar
  75. 75.
    Katz-Brull R., Seger D., Rivenson-Segal D., Rushkin E., Degani H. (2002) Metabolic markers of breast cancer. Enhanced choline metabolism and reduced choline-ether-phospholipid synthesis. Cancer Res. 62, 1966Google Scholar
  76. 76.
    Glunde K., Jie C., Bhujwalla Z.M. (2004) Molecular causes of the aberrant choline phospholipid metabolism in breast cancer. Cancer Res. 64, 4270CrossRefGoogle Scholar
  77. 77.
    K. Belkić, Padé-optimized magnetic resonance spectroscopy: New possibilities for early breast cancer detection. Medicinteknikdagarna, October 2006, UppsalaGoogle Scholar
  78. 78.
    Kriege M., Brekelmans C.T.M., Boetes C., Besnard P.E., Zonderland H.M., Obdeijn I.M. et al. (2004) Efficacy of MRI and mammography for breast-cancer screening in women with a familial or genetic predisposition. N. Engl. J. Med. 351, 427CrossRefGoogle Scholar
  79. 79.
    Kuhl C.K., Scharding S., Leutner C.C., Markkabati-Spitz N., Wardelmann E., Fimmers R. et al. (2005) Mammography, breast ultrasound, and magnetic resonance imaging for surveillance of women at high familial risk for breast cancer. J. Clin. Oncol. 23, 8469CrossRefGoogle Scholar
  80. 80.
    J.A. Smith, E. Andreopoulou, An overview of the status of imaging screening technology for breast cancer. Ann. Oncol. 15(Suppl. 1), i18 (2004)Google Scholar
  81. 81.
    Memorial Sloan-Kettering, cited by: T. Freeman, Medical Newswire Week 47, 2007Google Scholar
  82. 82.
    Kuranewicz J., Swanson M.G., Nelson S.J., Vigneron D.B. (2002) Combined magnetic resonance imaging and spectroscopic imaging approach to molecular imaging of prostate cancer. J. Magn. Reson. Imaging 16, 451CrossRefGoogle Scholar
  83. 83.
    Swanson M.G., Zektzer A.S., Tabatabai Z.L., Simko J., Jarso S., Keshari K.R., Schmitt L., Carroll P.R., Shinohara K., Vigneron D.B., Kurhanewicz J. (2006) Quantitative analysis of prostate metabolites using 1H HR-MAS spectroscopy. Magn. Reson. Med. 55, 1257CrossRefGoogle Scholar
  84. 84.
    Chen A.P., Cunningham C.H., Kurhanewicz J., Xu D., Hurd R.E., Pauly J.M., Carvajal L., Karpodinis K., Vigneron D.B. (2006) High-resolution 3D MR spectroscopic imaging of the prostate at 3T with the MLEV-PRESS sequence. Magn. Reson. Imaging 24, 825CrossRefGoogle Scholar
  85. 85.
    Lean C.L., Bourne R., Thompson J.F., Scolyer R.A., Stretch J., Li L.X., Russell P., Mountford C. (2003) Rapid detection of metastatic melanoma in lymph nodes using proton magnetic resonance spectroscopy of fine needle aspiration biopsy specimens. Melanoma Res. 13, 259CrossRefGoogle Scholar
  86. 86.
    J.F. Thompson, J.R. Stretch, R.F. Uren, V.S. Ka, R.A. Scolyer, Sentinel node biopsy for melanoma: Where have we been and where are we going? Ann. Surg. Oncol. 11(Suppl.), 147S (2004)Google Scholar
  87. 87.
    Dž. Belkić, K. Belkić, High-resolution magnetic resonance imaging (MRI), Medical Imaging Conference IEEE (MIC), Portland, October 22–25, 2003 Abstract Number 1971 (CD)Google Scholar
  88. 88.
    Thomas M.A., Wyckoff N., Yue K., Binesh N., Banakar S., Chung H-K., Sayre J., DeBruhl N. (2005) Two-dimensional MR spectroscopy characterization of breast cancer in vivo. Two-dimensional MR spectroscopy characterization of breast cancer in vivo. Technol. Cancer Res. Treat. 4, 99Google Scholar
  89. 89.
    Dž. Belkić, High-resolution parametric estimation of two-dimensional magnetic resonance spectroscopy, 20th Annual Meeting of European Soc. Magn. Res. Med. Biol. (ESMRMB), Abstract Number 365 (CD), Rotterdam (Netherlands), September 18–21, 2003Google Scholar
  90. 90.
    K. Belkić, Dž. Belkić. The fast Padé transform (FPT) for magnetic resonance spectroscopic imaging (MRSI) in oncology, Medical Imaging Conference IEEE (MIC), Portland, October 22–25, 2003 Abstract Number 1918 (CD), Portland (Oregon, USA), October 22–25, 2003Google Scholar
  91. 91.
    Park I., Tamai G., Lee M.C., Chuang C.F., Chang S.M., Berger M.S., Nelson S.J., Pirzkall A. (2007) Patterns of recurrence analysis in newly diagnosed glioblastoma multiforme after three-dimensional conformal radiation therapy with respect to pre-radiation therapy magnetic resonance spectroscopic findings. Int. J. Radiat. Oncol. Biol. Phys. 69, 381Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Oncology–PathologyKarolinska InstituteStockholmSweden
  2. 2.Institute for Prevention ResearchUniversity of Southern California Keck School of MedicineLos AngelesUSA

Personalised recommendations