Advertisement

Journal of Mathematical Chemistry

, Volume 43, Issue 3, pp 1207–1232 | Cite as

Regularized random-sampling high dimensional model representation (RS-HDMR)

  • Genyuan Li
  • Herschel Rabitz
  • Jishan Hu
  • Zheng Chen
  • Yiguang Ju
Article

High Dimensional Model Representation (HDMR) is under active development as a set of quantitative model assessment and analysis tools for capturing high-dimensional input–output system behavior. HDMR is based on a hierarchy of component functions of increasing dimensions. The Random-Sampling High Dimensional Model Representation (RS-HDMR) is a practical approach to HDMR utilizing random sampling of the input variables. To reduce the sampling effort, the RS-HDMR component functions are approximated in terms of a suitable set of basis functions, for instance, orthonormal polynomials. Oscillation of the outcome from the resultant orthonormal polynomial expansion can occur producing interpolation error, especially on the input domain boundary, when the sample size is not large. To reduce this error, a regularization method is introduced. After regularization, the resultant RS-HDMR component functions are smoother and have better prediction accuracy, especially for small sample sizes (e.g., often few hundred). The ignition time of a homogeneous H2/air combustion system within the range of initial temperature, 1000 <  T 0 <  1500 K, pressure, 0.1 < P <  100 atm and equivalence ratio of H2/O2, 0.2 < R < 10 is used for testing the regularized RS-HDMR.

Keywords

high dimensional model representation (HDMR) orthonormal polynomials regularization smoothing combustion ignition 

AMS(MOS) subject classifications

33C50 41A10 57R12 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rabitz H., Alis O.F., Shorter J. and Shim K. (1999). Comput. Phys. Commun. 117: 11–20CrossRefGoogle Scholar
  2. 2.
    Shim K. and Rabitz H. (1998). Phys. Rev. B 58: 1940–1946CrossRefGoogle Scholar
  3. 3.
    Alis O.F. and Rabitz H. (1999). J. Math. Chem. 25: 197–233CrossRefGoogle Scholar
  4. 4.
    Shorter J. and Rabitz H. (1999). J. Phys. Chem. A 103: 7192–7198CrossRefGoogle Scholar
  5. 5.
    Alis O.F. and Rabitz H. (2001). J. Math. Chem. 29: 127–142CrossRefGoogle Scholar
  6. 6.
    Li G., Rosenthal C. and Rabitz H. (2001). J. Phys. Chem. A 105: 7765–7777CrossRefGoogle Scholar
  7. 7.
    S.W. Wang, H. Levy, II., G. Li and H. Rabitz, J. Geophys. Res. 104 (1999) No.D23 30417–30426.Google Scholar
  8. 8.
    Shorter J. and Rabitz H. (2000). Geophys. Res. Let. 27: 3485–3488CrossRefGoogle Scholar
  9. 9.
    Li G., Wang S.W. and Rabitz H. (2002). J. Phys. Chem. 106: 8721–8733Google Scholar
  10. 10.
    Li G., Wang S.W., Rabitz H., Wang S.K. and P. Jáffe (2002). Chem. Eng. Sci. 57: 4445–4460CrossRefGoogle Scholar
  11. 11.
    Wang S., Jaff P.R.é, Li G., Wang S.W. and Rabitz H. (2003). J. Contam. Hydrol. 64: 283–307CrossRefGoogle Scholar
  12. 12.
    Wang S.W., Georgopoulos P.G., Li G. and Rabitz H. (2003). J. Phys. Chem. A 107: 4707–4718CrossRefGoogle Scholar
  13. 13.
    Li G., Wang S.W., Rosenthal C. and Rabitz H. (2001). J. Math. Chem. 30: 1–30CrossRefGoogle Scholar
  14. 14.
    Li G., Artamonov M., Rabitz H., Wang S.W., Georgopoulos P.G. and Demiralp M. (2003). J. Comput. Chem. 24: 647–656CrossRefGoogle Scholar
  15. 15.
    Li G., Rabitz H., Wang S.W. and Georgopoulos P.G. (2003). J. Comput. Chem. 24: 277–283CrossRefGoogle Scholar
  16. 16.
    Li G. and Rabitz H. (2006). J. Comput. Chem. 27: 1112–1118CrossRefGoogle Scholar
  17. 17.
    Geremia J.M., Rabitz H. and Rosenthal C. (2001). J. Chem. Phys. 114: 9325–9336CrossRefGoogle Scholar
  18. 18.
    Shenvi N., Geremia J.M. and Rabitz H. (2002). J. Phys. Chem. A 106: 12315–12323CrossRefGoogle Scholar
  19. 19.
    Geremia J.M. and Rabitz H. (2001). Phys. Rev. A 64(2): 022710CrossRefGoogle Scholar
  20. 20.
    Li G., Rabitz H., Wang S.W. and Georgopoulos P.G. (2005). IJRAM 5: 387–406CrossRefGoogle Scholar
  21. 21.
    Feng X.J., Hooshangi S., Chen D., Li G., Weiss R. and Rabitz H. (2004). J. Biophys. 87: 2195–2202CrossRefGoogle Scholar
  22. 22.
    Li G., Hu J.S., Wang S.W. and Georgopoulos P.G., Schoendorf J. and Rabitz H. (2006). J. Phys. Chem. 110: 2474–2485Google Scholar
  23. 23.
    Wahba G. (1985). Ann. Statist. 13: 1378–1402CrossRefGoogle Scholar
  24. 24.
    Wahba G., Wang Y.D., Gu C., Klein R. and Klein B. (1995). Ann. Statist. 23: 1865–1895CrossRefGoogle Scholar
  25. 25.
    Li J., Zhao Z.W., Kazakov A. and Dryer F.L. (2004). Int. J. Chem. Kinet. 36: 566–575CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Genyuan Li
    • 1
  • Herschel Rabitz
    • 1
  • Jishan Hu
    • 2
  • Zheng Chen
    • 3
  • Yiguang Ju
    • 3
  1. 1.Department of ChemistryPrinceton UniversityPrincetonUSA
  2. 2.Department of MathematicsHong Kong University of Science and TechnologyKowloonHong Kong
  3. 3.Department of Mechanical and Aerospace EngineeringPrinceton UniversityPrincetonUSA

Personalised recommendations