Journal of Mathematical Chemistry

, Volume 41, Issue 4, pp 343–353 | Cite as

Bound states of a more general exponential screened Coulomb potential

Article

An alternative approximation scheme has been used in solving the Schrödinger equation to the more general case of exponential screened Coulomb potential, V(r) = −(a/r)[1 + (1 + br)e −2br ]. The bound state energies of the 1s, 2s and 3s-states, together with the ground state wave function are obtained analytically upto the second perturbation term.

Keywords

exponential screened Coulomb potential perturbation theory 

PACS NO

03.65.Ge 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.,erson, Phys. Rev. 86 (1952) 694; R. Kubo, Phys. Rev. 87 (1952) 568.Google Scholar
  2. 2.
    R. A. Ferrell and D. J. Scalapino, Phys. Rev. A 9 (1974) 846; A. J. Bray, J. Phys. A 7 (1974) 2144.Google Scholar
  3. 3.
    Bonch-Bruevich V.L., Glasko V.B. (1959). Sov. Phys. Dokl. 4: 147Google Scholar
  4. 4.
    Takimoto N. (1959). J. Phys. Soc. Jpn. 14: 1142CrossRefGoogle Scholar
  5. 5.
    V. L. Bonch-Bruevich and Sh. M. Kogan, Sov. Phys. Solid State 1 (1960) 1118; C. Weisbuch and B. Vinter, Quantum Semiconductor Heterostructures (Academic, New York, 1993); P. Harrison, Quantum Wells, Wires and Dots (Wiley, England, 2000).Google Scholar
  6. 6.
    Prokopev E.P. (1967). Sov. Phys. Solid State 9: 993Google Scholar
  7. 7.
    Dutt R., Varshni Y.P. (1986). Z. Phys. D 2: 207CrossRefGoogle Scholar
  8. 8.
    R. Dutt, A. Ray and P. P. Ray, Phys. Lett. A 83 (1981) 65; C. S. Lam and Y. P. Varshni, Phys. Rev. A 4 (1971) 1875; D. Singh and Y. P. Varshni, Phys. Rev. A 28 (1983) 2606.Google Scholar
  9. 9.
    Gerry C.C., Laub J. (1984). Phys. Rev. A 30: 1229CrossRefGoogle Scholar
  10. 10.
    Sever R., Tezcan C. (1987) Phys. Rev. A 36: 1045CrossRefGoogle Scholar
  11. 11.
    B. Gönül, K. Köksal and E. Bakır, Phys. Scr. 73 (2006) 279; B. Gönül, Chin. Phys. Lett. 21 (2004) 1685; B. Gönül, Chin. Phys. Lett. 21 (2004) 2330; B. Gönül and M. Koçak, Mod. Phys. Lett. A 20 (2005) 355; B. Gönül, N. Çelik and E. Olğar, Mod. Phys. Lett. A 20 (2005) 1683; B. Gönül and M. Koçak, Chin. Phys. Lett. 20 (2005) 2742; ibid. Mod. Phys. Lett. A 20 (2005) 1983.Google Scholar
  12. 12.
    S.M. Ikhdair and R. Sever, arXiv:quant-ph/0604073 [in press, J. Math. Chem. (2006)]; ibid. Int. J. Mod. Phys. A21 (2006) 6465; ibid. [in press, J. Molec. Struct.: THEOCHEM (2007) doi: 10.1016/j.theochem 2007.01.019]; ibid. J. Molec. Struct.: THEOCHEM 806 (2007) 155.Google Scholar
  13. 13.
    Cooper F., Khare A., Sukhatme U.P. (1995). Phys. Rep. 251: 267CrossRefGoogle Scholar
  14. 14.
    Znojil M. (1999). J. Math. Chem. 26: 157CrossRefGoogle Scholar
  15. 15.
    Alberg M., Wilets L. (2001). Phys. Lett. A 286: 7CrossRefGoogle Scholar
  16. 16.
    Doren D.J., Herschbach D.R. (1986). Phys. Rev. A 34: 2665CrossRefGoogle Scholar
  17. 17.
    H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms (Springer, Berlin, 1957).Google Scholar
  18. 18.
    Gradshteyn L.S., Ryzhik I.M. (1965). Tables of Integrals, Series and Products. Academic, New YorkGoogle Scholar
  19. 19.
    Lee C. (2000). Phys. Lett. A 267: 101CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of PhysicsNear East UniversityNicosiaTurkey
  2. 2.Department of PhysicsMiddle East Technical UniversityAnkaraTurkey

Personalised recommendations