Journal of Mathematical Chemistry

, Volume 43, Issue 2, pp 601–619 | Cite as

Analysis of a Monod–Haldene type food chain chemostat with seasonally variably pulsed input and washout

  • Fengyan WangEmail author
  • Guoping Pang
  • Jin Hui

In this paper, we introduce and study a model of a Monod–Haldene type food chain chemostat with seasonally variably pulsed input and washout. We investigate the subsystem with substrate and prey and study the stability of the periodic solutions, which are the boundary periodic solutions of the system. The stability analysis of the boundary periodic solution yields an invasion threshold. By use of standard techniques of bifurcation theory, we prove that above this threshold there are periodic oscillations in substrate, prey and predator. Simple cycles may give way to chaos in a cascade of period-doubling bifurcations. Furthermore, bifurcation diagrams have shown that there exists complexity for the pulsed system including periodic doubling cascade, periodic halving cascade and Pitchfork bifurcations and tangent bifurcations.


Monod–Haldene growth rate chemostat seasonally variably pulsed input and washout chaos 

AMS subject classification

34C35 92D25 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hale J.K., Somolinos A.S. (1983). J. Math. Biol. 18:255CrossRefGoogle Scholar
  2. 2.
    Hsu S.B. (1980). J. Math. Biol. 18:115CrossRefGoogle Scholar
  3. 3.
    Alessandra G., Oscar D.F., Sergio R. (1998). Bull. Math. Biol. 60:703CrossRefGoogle Scholar
  4. 4.
    Mark K., Sayler G.S., Waltman T.W. (1992). Bull. Math. Biol. 54:619Google Scholar
  5. 5.
    Eric F., Mark K. (1993). Theorl. Popul. Biol. 44:203CrossRefGoogle Scholar
  6. 6.
    Butler G.J., Hsu S.B., Waltman P. (1985). SIAM J. Appl. Math. 45:435CrossRefGoogle Scholar
  7. 7.
    Lenas P., Pavlou S. (1995). Math. Biosci. 129:111CrossRefGoogle Scholar
  8. 8.
    Pilyugin S.S., Waltman P. (1999). SIAM J. Appl. Math. 59:1157CrossRefGoogle Scholar
  9. 9.
    D. Bainov and P. Simeonor, Impulsive differential equations: periodic solutions and applications. Pitman Monogr. Surv. Pure Appl. Math. 66 (1993).Google Scholar
  10. 10.
    V. Laksmikantham, D.D. Bainov and P.S. Simeonov, Theory of Impulsive Differential Equations (World Scientific Singapore 1989).Google Scholar
  11. 11.
    Tang S.Y., Chen L.S. (2002). J. Math. Biol. 44:185CrossRefGoogle Scholar
  12. 12.
    Shulgin B., Stone L., Agur I. (1998). Bull. Math. Biol. 60:1CrossRefGoogle Scholar
  13. 13.
    D’Onofrio A. (2002). Bull. Math. Biol. 60:1Google Scholar
  14. 14.
    Panetta J.C. (1996). Bull. Math. Biol. 58:425CrossRefGoogle Scholar
  15. 15.
    Liu X.N., Chen L.S. (2003). Chaos Solitons Fractals 16:311CrossRefGoogle Scholar
  16. 16.
    Shuwen Z., Lingzhen D., Lansun C. (2005). Chaos Solitons Fractals 23:631CrossRefGoogle Scholar
  17. 17.
    Wang F., Zhang S., Chen L., Sun J. (2005). Nonlinear Sci. Numer. Simulat. 6(2):169Google Scholar
  18. 18.
    Cushing J.M. (1997). SIAM J. Appl. Math. 10:384Google Scholar
  19. 19.
    May R.M. (1974). Science 186:645CrossRefGoogle Scholar
  20. 20.
    Gakkhar S., Naji M.A. (2003). Chaos Solitons Fractal 18:229CrossRefGoogle Scholar
  21. 21.
    Klebanoff A., Hastings A. (1994). J. Math. Biol. 32:427CrossRefGoogle Scholar
  22. 22.
    Neubert M.G., Caswell H. (2000). J. Math. Biol. 41:103CrossRefGoogle Scholar
  23. 23.
    Grebogi C., Ott E., York J.A. (1983). Physica D 7:181CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.College of ScienceJimei UniversityXiamenP.R. China
  2. 2.Department of Mathematics and Computer ScienceYulin Normal UniversityYulinP.R. China
  3. 3.Department of Information and Computation SciencesGuangxi University of TechnologyLiuzhouP.R. China

Personalised recommendations