Advertisement

Journal of Mathematical Chemistry

, Volume 42, Issue 4, pp 789–813 | Cite as

An alternative analysis of enzyme systems based on the whole reaction time: evaluation of the kinetic parameters and initial enzyme concentration

  • R. Varón
  • M. Garcia-Moreno
  • J. Masiá-Pérez
  • F. García-Molina
  • F. García-Cánovas
  • E. Arias
  • E. Arribas
  • F. García-Sevilla
Article

Abstract

This work presents an alternative analysis of the integrated rate equations corresponding to the simple Michaelis-Menten mechanism without product inhibition. The suggested new results are reached under a minimal set of assumptions and include, as a particular case, the classical integrated Michaelis–Menten equation. Experimental designs and a kinetic data analysis are suggested to the estimation of the maximum steady-state rate, V max, the Michaelis–Menten constant, K m, the initial enzyme concentration, [E]0, and the catalytic constant, k 2. The goodness of the analysis is tested with simulated time progress curves obtained by numerical integration.

Keywords

Enzyme kinetics Michaelis–Menten integrated equation product rate substrate rate numerical integration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cornish-Bowden A (1989). Fundamentals of Enzyme Kinetics. Butterworths, London, BostonGoogle Scholar
  2. 2.
    Dixon M., Webb E.C., Thorne C.J.R., Tipton K.F. (1979) Enzymes, 3rd edn. Longman, London, p. 300Google Scholar
  3. 3.
    Segel I.H. (1975) Enzyme Kinetics. Wiley, New York, pp. 54–64Google Scholar
  4. 4.
    Darvey I.G., Williams J.F. (1964) Integrated steady-state rate equations for enzyme-catalyzed reactions. Biochim. Biophys. Acta 85:1–10Google Scholar
  5. 5.
    Schwert G.W. (1969) Use integrated rate equations in estimating the kinetic constants of enzyme-catalyzed reactions, J. Biol. Chem. 244:1278–1284Google Scholar
  6. 6.
    Darvey I.G., Shrager R., Kahn L. (1974) Integrated steady state rate equations and the determination of individual rate constant. J. Biol. Chem. 250:4696–4701Google Scholar
  7. 7.
    Wharton C.W., Szawelski R.J. (1982) Half-time analysis of the integrated Michaelis equation-simulated and use of the half-time plot and its direct linear variant in the analysis of some alpha-chymotrypsin-catalized, papain-catalized and fumarase-catalyzed reactions. Biochem. J. 203:351–360Google Scholar
  8. 8.
    Duggleby R.G. (1990) Pooling and comparing estimates from several experiments of a Michaelis constant for an enzyme, Biochem. J. 189, 84–87Google Scholar
  9. 9.
    Duggleby R.G., Clarke R.B. (1991) Experimental designs for estimating the parameters of the Michaelis-Menten equation from progress curves of enzyme-catalyzed reactions, Biochim. Biophys. Acta 1080: 231–236Google Scholar
  10. 10.
    Duggleby R.G. (2001) Quantitative analysis of the time courses of enzyme-catalyzed reactions. Methods 24:168–174CrossRefGoogle Scholar
  11. 11.
    Goudar C.T., Sonnad J.R., Duggleby R.G. (1999) Parameter estimation using a direct solution of the integrated Michaelis–Menten equation, Biochim. Biophys. Acta 1429:377–383Google Scholar
  12. 12.
    Boeker E. (1984) Integrated rate equations for enzyme-catalysed first-order and second-order reactions, Biochem. J. 223: 15–22Google Scholar
  13. 13.
    Kellershon N., Laurent M. (1985) Analysis of progress curves for a highly concentrated Michaelian enzyme in the presence or absence of product inhibition. Biochem. J. 231: 65–74Google Scholar
  14. 14.
    Fehlberg E. (1970) Classische Runge–Kutta Formeln vierter und niedrigerer Ordnung mit Schcrittweiten-Kontrolle und ihre Anvendung auf Wärmeleitungs-probleme. Computing 6: 61–71CrossRefGoogle Scholar
  15. 15.
    J.H. Mathews and K.D. Fink, Ecuaciones diferenciales ordinarias, in: Métodos Numéricos con MATLAB, 3rd edn., I. Capella, (Prentice Hall, Madrid. Spain 1999) pp. 505–509.Google Scholar
  16. 16.
    R. Burden and J. Faires, Análisis Numérico (Grupo Editorial Iberoamérica). México 1985.Google Scholar
  17. 17.
    García-Sevilla F., Garrido C. Solo del, Duggleby R.G., García-Cánovas F., Peyró R., Varón R (2000) Use of a windows program for simulation of the progress curves of reactants and intermediates involved in enzyme-catalyzed reactions. Biosystems 54: 151–164CrossRefGoogle Scholar
  18. 18.
    Duggleby R.G. (1994) Analysis of progress curves for enzyme-catalyzed reactions: application to unstable enzymes, coupled reactions and transient-state kinetics, Biochim. Biophys. Acta 1205: 268–274Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • R. Varón
    • 1
  • M. Garcia-Moreno
    • 1
  • J. Masiá-Pérez
    • 2
  • F. García-Molina
    • 3
  • F. García-Cánovas
    • 3
  • E. Arias
    • 4
  • E. Arribas
    • 5
  • F. García-Sevilla
    • 6
  1. 1.Departamento de Química Física, Escuela Politécnica SuperiorUniversidad de Castilla-La ManchaAlbaceteSpain
  2. 2.Servicio de Cardiología, Complejo HospitalarioUniversitario de AlbaceteAlbaceteSpain
  3. 3.Departamento de Bioquímica y Biología Molecular A, Facultad de BiologíaUniversidad de MurciaMurciaSpain
  4. 4.Departamento de Sistemas Informáticos, Escuela Politécnica Superior de AlbaceteUniversidad de Castilla-La ManchaAlbaceteSpain
  5. 5.Departamento de Física Aplicada, Escuela Politécnica Superior de AlbaceteUniversidad de Castilla-La ManchaAlbaceteSpain
  6. 6.Departamento de Ingeniería Electrónica, Eléctrica, Automática y Comunicaciones, Escuela Politécnica Superior de AlbaceteUniversidad de Castilla-La ManchaAlbaceteSpain

Personalised recommendations