Journal of Mathematical Chemistry

, Volume 40, Issue 1, pp 85–103 | Cite as

Mathematical Optimization of in vivo NMR Chemistry Through the Fast Padé Transform: Potential Relevance for Early Breast Cancer Detection by Magnetic Resonance Spectroscopy

Article

Mathematical advances in signal processing through the fast Padé transform (FPT) can greatly improve the information extracted via in vivo nuclear magnetic resonance (NMR) chemistry. The FPT is a frequency-dependent, non-linear rational polynomial approximation of the exact Maclaurin series, which dramatically improves resolution and signal-to-noise ratio in a stable manner with robust error analysis and provides precise numerical data for all the peak parameters (position, height, width and phase) for every true resonance including those that are weak and/or overlapping. The concentrations of many of the chemical constituents of tissues can thereby be accurately determined. These advantages of the FPT are particularly germane for in vivo NMR detection and quantification of a number of molecular markers of breast cancer, such as phosphocholine, as well as lactate, which cannot be assessed using standard Fourier data analytical techniques applied to in vivo NMR in the clinical setting.

Keywords

fast Padé transform NMR chemistry early cancer diagnostics breast cancer 

Abbreviations

CDP

cytosine diphosphate

CHESS

CHEmical Shift Selective

CI

confidence interval

FFT

fast Fourier transform

FPT

fast Padé transform

GPC

glycerophosphocholine

PA

Padé approximant

PC

phosphocholine

MR

magnetic resonance

MRI

magnetic resonance imaging

MRS

magnetic resonance spectroscopy

MRSI

magnetic resonance spectroscopic imaging

NMR

nuclear magnetic resonance

SD

standard deviation

SNR

signal to noise ratio

TE

echo time

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Belkić Dž. (2004). Quantum Mechanical Signal Processing and Spectral Analysis. Institute of Physics Publishing, BristolGoogle Scholar
  2. 2.
    Belkić Dž. and Belkić K. (2005). Int. J. Quantum Chem. 105:493CrossRefGoogle Scholar
  3. 3.
    Pijnappel W.W.F., van den Boogaart A., De Beer R., van Ormondt R.D. (1992). Magn. Reson. 97:122Google Scholar
  4. 4.
    Porat B. (1997). A Course in Digital Signal Processing. Wiley, New YorkGoogle Scholar
  5. 5.
    Belkić Dž. (2004). Nucl. Instrum. Meth. Phys. Res. A 525:366CrossRefGoogle Scholar
  6. 6.
    Belkić Dž. and Belkić K. (2005). Phys. Med. Biol. 50:4385CrossRefGoogle Scholar
  7. 7.
    Dž. Belkić and K. Belkić, Phys. Med. Biol. 51(2006) 1049Google Scholar
  8. 8.
    Belkić Dž. (2006). Exact quantification of time signals in Padé-based magnetic resonance spectroscopy. Phys. Med. Biol. 51:2633CrossRefGoogle Scholar
  9. 9.
    Belkić Dž., Dando P.A., Main J. and Taylor H.S. (2000). J. Chem. Phys. 113:6542CrossRefGoogle Scholar
  10. 10.
    Belkić Dž., Dando P.A., Taylor H.S., and Main J. (1999). Chem. Phys. Lett. 315:135CrossRefGoogle Scholar
  11. 11.
    Belkić Dž., Dando P.A., Taylor H.S., Main J. and Shin S-K. (2000). J. Phys. Chem. A 104:11677CrossRefGoogle Scholar
  12. 12.
    Deschamps M., Burghardt I., Derouet C., Bodenhausen G. and Belkić Dž. (2000). J. Chem. Phys. 113:1630CrossRefGoogle Scholar
  13. 13.
    Main J., Dando P.A., Belkić Dž. and Taylor H.S. (1999). Europhys. Lett 48:250CrossRefGoogle Scholar
  14. 14.
    Main J., Dando P.A., Belkić Dž. and Taylor H.S. (2000). J. Phys. A. 33:1247CrossRefGoogle Scholar
  15. 15.
    Belkić Dž. (2004). Nucl. Instrum. Meth. Phys. Res. A 525:379CrossRefGoogle Scholar
  16. 16.
    Belkić Dž. (2004). Nucl. Instrum. Meth. Phys. Res A 525:372CrossRefGoogle Scholar
  17. 17.
    Belkić Dž. (2002). MAGMA 15:36CrossRefGoogle Scholar
  18. 18.
    Pfeuffer J., Tkáč I., Provencher S.W., and Gruetter R. (1999). J. Magn. Reson. 141:104CrossRefGoogle Scholar
  19. 19.
    Kuhl C.K., Kuhn W., and Schild H. (2005). The Breast 14:480CrossRefGoogle Scholar
  20. 20.
    Kuni H., Schmitz-Feuerhake I. and Dieckmann H. (2003). Gesundheitswesen 65:44Google Scholar
  21. 21.
    Laderoute M.P. (2004). Br. J. Cancer 90:278CrossRefGoogle Scholar
  22. 22.
    Smith J.A., and Andreopoulou E. (2004). Ann. Oncol. 15 (Suppl. 1):i18CrossRefGoogle Scholar
  23. 23.
    Kopans D.B. (1998). Breast Imaging, 2nd ed. Lippincott-Raven Publishers, PhiladelphiaGoogle Scholar
  24. 24.
    Greendale G.A., Reboussin B.A., Slone S., Wasilauskas C., Pike M.C., and Ursin G. (2003). J. Natl. Cancer. Inst 95:30CrossRefGoogle Scholar
  25. 25.
    Nass S.J., Henderson C. and Lashof J.C. (eds) (2001). Mammography and Beyond: Developing Technologies for the Early Detection of Breast Cancers. National Academy Press, Washington D.C.Google Scholar
  26. 26.
    Morris E.A. (2002). Radiol. Clin. N. Am. 40:443CrossRefGoogle Scholar
  27. 27.
    Katz-Brull R., Lavin P.T., and Lenkinski R.E. (2002). J. Natl. Cancer Inst 9:1197Google Scholar
  28. 28.
    Kuhl C., Schrading S., Leutner C.C., Morakkabati-Spitz N., Wardelmann E., Fimmers R., Kuhn W. and Schild H.H. (2005). J. Clin. Oncol. 23:8469CrossRefGoogle Scholar
  29. 29.
    Kriege M., Brekelmans C.T.M., Boetes C., Basnard P.E., Zonderland H.M., and Obdeijn I.M. et al. (2004). N. Engl. J. Med 351:427CrossRefGoogle Scholar
  30. 30.
    Robson M. (2004). Clin. Breast Cancer 5:260CrossRefGoogle Scholar
  31. 31.
    Belkić K. (2004). Isr. Med. Assoc. J. 6:610Google Scholar
  32. 32.
    Huang W., Fisher P.R., Dulaimy K., Tudorica L.A., O’Hea B. and Button T.M. (2004). Radiology 232:585CrossRefGoogle Scholar
  33. 33.
    Kim J.-K., Park S.-H., Lee H.M., Lee Y.-H., Sung N.-K., Chung D.-S. and Kim O.-D. (2003). The Breast 12:179CrossRefGoogle Scholar
  34. 34.
    Jacobs M.A., Barker P.B., Bottomley P.A., Bhujwalla Z. and Bluemke D.A. (2004). J. Magn. Reson. Imaging 19:68CrossRefGoogle Scholar
  35. 35.
    Bolan P.J., Meisamy S., Baker E.H., Lin J., Emory T. and Nelson M et al. (2003). Magn. Reson. Med. 50:1134CrossRefGoogle Scholar
  36. 36.
    Bolan P.J., DelaBarre L., Baker E.H., Merkle H., Everson L.I., Yee D. and Garwood M. (2002). Magn. Reson. Med. 48: 215CrossRefGoogle Scholar
  37. 37.
    Jagannathan N.R., Singh M., Govindaraju V., Raghunathan P., Coshic O. and Julka P.K. et al. (1998). NMR Biomed. 11: 414CrossRefGoogle Scholar
  38. 38.
    Thomas M.A., Wyckoff N., Yue K., Binesh N., Banakar S. and Chung H.-K. et al. (2005). Technol. Cancer. Res. Treat. 4: 99Google Scholar
  39. 39.
    Katz-Brull R., Seger D., Rivenson-Segal D., Rushkin E. and Degani H. (2002). Cancer Res. 62:1966Google Scholar
  40. 40.
    Gribbestad I.S., Sitter B., Lundgren S., Krane J. and Axelson D. (1999). Anticancer Res. 19:1737Google Scholar
  41. 41.
    Belkić K. (2004). Nucl. Instru. Meth. Phys. Res A. 525:313CrossRefGoogle Scholar
  42. 42.
    Sharma U., Mehta A., Seenu V. and Jagannathan N.R. (2004). Magn. Reson. Imag 22:697CrossRefGoogle Scholar
  43. 43.
    Rivenzon-Segal D., Margalit R. and Degani H. (2002). Am. J. Physiol. Endocrinol. Metab 283:E623Google Scholar
  44. 44.
    Aboagye E.O., and Bhujwalla Z.M. (1999). Cancer Res. 59:80Google Scholar
  45. 45.
    Glunde K., Jie C. and Bhujwalla Z.M. (2004). Cancer Res. 64:4270CrossRefGoogle Scholar
  46. 46.
    Katz-Brull R., Margalit R. and Degani H. (2001). Magn. Reson. Med. 46:31CrossRefGoogle Scholar
  47. 47.
    Loening N.M., Chamberlin A.M., Zepeda A.G., Gilberto Gonzalez R. and Cheng L.L. (2005). NMR Biomed. 18:413CrossRefGoogle Scholar
  48. 48.
    Arús C. (2002). MAGMA 15:38Google Scholar
  49. 49.
    Danielsen E.R., and Ross B. (1999). Magnetic Resonance Spectroscopy Diagnosis of Neurological Diseases. Marcel Dekker Inc., New YorkGoogle Scholar
  50. 50.
    Dž. Belkić, High-Resolution Parametric Estimation of Two-Dimensional Magnetic Resonance Spectroscopy, 20th Annual Meeting of European Soc. Magn. Res. Med. Biol. (ESMRMB), Abstract Number 365 (CD), Rotterdam (Netherlands), September 18–21, 2003.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of Oncology and PathologyKarolinska InstituteStockholmSweden
  2. 2.Institute for Prevention ResearchThe University of Southern California School of MedicineLos AngelesUSA

Personalised recommendations