Journal of Mathematical Chemistry

, Volume 40, Issue 1, pp 3–13 | Cite as

Numerical Methods for a Quantum Drift–diffusion Equation in Semiconductor Physics


We present the numerical methods and simulations used to solve a charge transport problem in semiconductor physics. The problem is described by a Wigner–Poisson kinetic system we have recently proposed and whose results are in good agreement with known experiments. In this model, we consider doped semiconductor superlattices in which electrons are supposed to occupy the lowest miniband, exchange of lateral momentum is ignored, the electron–electron interaction is treated in the Hartree approximation and elastic and inelastic collisions are taken into account. Nonlocal drift-diffusion equations derived systematically elsewhere from the hyperbolic limit of a kinetic Wigner–Poisson model are solved. The nonlocality of the original quantum kinetic model equations implies that the derived drift-diffusion equations contain spatial averages over one or more superlattice periods. Numerical methods are based upon prior knowledge on physical properties of the phenomenon and have shown to be effective in validating our formulation. Numerical solutions of the equations show self-sustained oscillations of the current through a voltage biased superlattice, in good agreement with known experiments.


numerical methods numerical simulations nonlocal drift-diffusion equations quantum kinetics 

MSC 2000

37M05 37N20 74S20 81T80 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bonilla L.L. (2002). Theory of nonlinear charge transport, wave propagation and self-oscillations in semiconductor superlattices. J. Phys. Condens. Matter 14:R341–R381CrossRefGoogle Scholar
  2. 2.
    Bhatnagar P.L., Gross E.P., and Krook M. (1954). A model for collision processes in gases. i. small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94:511–525CrossRefGoogle Scholar
  3. 3.
    Bonilla L.L., Escobedo R., and Perales A., Generalized drift-diffusion model for miniband superlattices, Phys. Rev. B 68 (2003) R241304/1–4Google Scholar
  4. 4.
    Perales A., Bonilla L.L., and Escobedo R. (2004). Miniband transport and oscillations in semiconductor superlattices. Nanotechnology 15:S229–S233CrossRefGoogle Scholar
  5. 5.
    Bonilla L.L., and Escobedo R. (2005). Wigner-Poisson and nonlocal drift-diffusion model equations for semiconductor superlattices, Math. Mod. Meth Appl. Sci. 15(8):1253–1272CrossRefGoogle Scholar
  6. 6.
    Ignatov A.A., and Shashkin V.I. (1987). Bloch oscillations of electrons and instability of space-charge waves in semiconductor superlattices. Sov. Phys. JETP 66:526–530Google Scholar
  7. 7.
    Carpio A., Hernando P.J., and Kindelan M. (2001). Numerical study of hyperbolic equations with integral constraints arising in semiconductor theory. SIAM J. Numer. Anal. 39:168–191CrossRefGoogle Scholar
  8. 8.
    Schomburg E., Blomeier T., Hofbeck K., Grenzer J., Brandl S., Lingott I., Ignatov A.A., Renk K.F., Pavelev D.G., Koschurinov Y., Melzer B.Y., Ustinov V.M., Ivanov S.V., Zhukov A., and Kopev P.S. (1998). Current oscillations in superlattices with different miniband widths, Phys. Rev. B 58:4035–4038CrossRefGoogle Scholar
  9. 9.
    Scheuerer R., Schomburg E., and Renk K.F. (2002). Feasibility of a semiconductor superlattice oscillator based on quenched domains for the generation of submillimeter waves. Appl. Phys. Lett. 81:1515–1517CrossRefGoogle Scholar
  10. 10.
    Schomburg E., Henini M., Chamberlain J., M., Steeson D., P., Brandl S., Hofbeck K., Renk F., and Wegscheider W. (1999). Self-sustained current oscillation above 100 Ghz in a GaAs/AlAs superlattice. Appl. Phys. Lett. 74:2179–2181CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Grupo de Modelización y Simulación Numérica, Escuela Politécnica SuperiorUniversidad Carlos III de MadridMadridSpain

Personalised recommendations