Journal of Mathematical Chemistry

, Volume 41, Issue 3, pp 295–314 | Cite as

Monotone Chemical Reaction Networks

  • Patrick De Leenheer
  • David Angeli
  • Eduardo D. Sontag

We analyze certain chemical reaction networks and show that every solution converges to some steady state. The reaction kinetics are assumed to be monotone but otherwise arbitrary. When diffusion effects are taken into account, the conclusions remain unchanged. The main tools used in our analysis come from the theory of monotone dynamical systems. We review some of the features of this theory and provide a self-contained proof of a particular attractivity result which is used in proving our main result.


chemical reaction networks monotone systems 

AMS subject classification

80A30 34C12 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amann H. (1978). J. Math. Anal. Appl. 65: 432–467CrossRefGoogle Scholar
  2. 2.
    Angeli D., Sontag E.D. (2003). IEEE Trans. Autom. Control 48: 1684–1698CrossRefGoogle Scholar
  3. 3.
    Angeli D., Sontag E.D. (2004). Systems and Control Lett. 51: 185–202CrossRefGoogle Scholar
  4. 4.
    Angeli D., De Leenheer P., Sontag E.D. (2004). Systems and Control Lett. 52: 407–414CrossRefGoogle Scholar
  5. 5.
    D. Angeli and E.D. Sontag, Interconnections of monotone systems with steady-state characteristics, in Optimal Control, Stabilization, and Nonsmooth Analysis, eds. M. de Queiroz, M. Malisoff, and P. Wolenski (Springer-Verlag, Heidelberg, (2004) pp. 135–154).Google Scholar
  6. 6.
    Angeli D., Ferrell J.E., Jr., Sontag E.D. (2004). Proc. Natl. Acad. Sci. USA 101: 1822–1827CrossRefGoogle Scholar
  7. 7.
    Chaves M., Sontag E.D. (2002). Eur. J. Control 8: 343–359Google Scholar
  8. 8.
    De Leenheer P., Angeli D., Sontag E.D. (2005). Math Biosci Eng. 2: 25–42Google Scholar
  9. 9.
    P. De Leenheer, D. Angeli an d E.D. Sontag, Crowding effects promote coexistence in the chemostat, submitted (also DIMACS Tech report 2003-44; preliminary version entitled ‘A feedback perspective for chemostat models with crowding effects’ has appeared in the Lecture Notes in Control and Inform. Sci., 294, 167–174 (2003)).Google Scholar
  10. 10.
    P. De Leenheer, S.A. Levin, E.D. Sontag and C.A. Klausmeier, Global stability in a chemostat with multiple nutrients, Accepted for publication in J. Math Biol. (also DIMACS Tech report 2003-40).Google Scholar
  11. 11.
    Feinberg M. (1987). Chem. Eng. Sci. 42: 2229–2268CrossRefGoogle Scholar
  12. 12.
    Hirsch M.W. (1982). SIAM J. Appl. Math. 13: 167–179CrossRefGoogle Scholar
  13. 13.
    Hirsch M.W. (1985). SIAM J. Math. Anal. 16: 423–439CrossRefGoogle Scholar
  14. 14.
    Hirsch M.W. (1988). Nonlinearity 1: 51–71CrossRefGoogle Scholar
  15. 15.
    Hirsch M.W. (1990). SIAM J. Math. Anal. 21: 1225–1234CrossRefGoogle Scholar
  16. 16.
    Hirsch M.W. (1989). J. Diff. Eqns. 80: 94–106CrossRefGoogle Scholar
  17. 17.
    Hirsch M.W., Smith H.L. (2003). Competitive and cooperative systems: a mini-review. Lecture Notes in Control and Inform. Sci. 294: 183–190Google Scholar
  18. 18.
    M.W. Hirsch and H.L. Smith, Generic quasi-convergence for strongly order preserving semiflows: a new approach, preprint.Google Scholar
  19. 19.
    Horn F.J.M., Jackson R. (1972). Arch. Ration. Mech. Anal. 49: 81–116CrossRefGoogle Scholar
  20. 20.
    Jiang J.F. (1994). Bull. London Math. Soc. 26: 455–458CrossRefGoogle Scholar
  21. 21.
    Kunze H., Siegel D. (2002). J Math Chem. 31: 339–344CrossRefGoogle Scholar
  22. 22.
    Mierczynski J. (1987). SIAM J. Math. Anal. 18: 642–646CrossRefGoogle Scholar
  23. 23.
    Mincheva M., Siegel D. (2004). Nonlinear Anal. 56: 1105–1131CrossRefGoogle Scholar
  24. 24.
    A.J. Shapiro, The statics and dynamics of multicell reaction systems, Ph.D. Thesis, The University of Rochester, 1975, 176 pp ( Scholar
  25. 25.
    Siljak D.D. (1978). Large-scale Dynamic Systems. Elsevier, North-HollandGoogle Scholar
  26. 26.
    Smillie J. (1984). SIAM J. Math. Anal. 15: 530–534CrossRefGoogle Scholar
  27. 27.
    H.L. Smith, Monotone Dynamical Systems (AMS, Providence (1995).Google Scholar
  28. 28.
    Smith H.L., Waltman P. (1995). The Theory of the Chemostat. Cambridge University Press, CambridgeGoogle Scholar
  29. 29.
    E.D. Sontag, Structure and stability of certain chemical networks and applications to the kinetic proofreading model of T-cell receptor signal transduction, IEEE Trans. Automat. Control 46 (2001) 1028–1047. Errata in IEEE Trans. Automat. Control 47 (2002) 705.Google Scholar
  30. 30.
    A.I. Volpert, V.A. Volpert and V.A. Volpert, Traveling wave solutions of parabolic systems (AMS, Providence, 1994).Google Scholar
  31. 31.
    Walcher S. (2001). J. Math. Anal. Appl. 263: 543–554CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Patrick De Leenheer
    • 1
  • David Angeli
    • 2
  • Eduardo D. Sontag
    • 3
  1. 1.Department of MathematicsUniversity of FloridaGainesvilleUSA
  2. 2.Dip. di Sistemi e InformaticaUniversitá di FirenzeFirenzeItaly
  3. 3.Department of MathematicsRutgers UniversityNew BrunswickUSA

Personalised recommendations