Advertisement

Journal of Mathematical Chemistry

, Volume 39, Issue 2, pp 401–416 | Cite as

Topological Space of the Chemical Elements and its Properties

  • Guillermo Restrepo
  • Eugenio J. Llanos
  • Héber Mesa
Article

Abstract

We carried out a mathematical study of 72 chemical elements taking advantage of the chemotopological method. We selected 128 properties to define the elements (physico-chemical, geochemical and chemical properties). Then, we looked for correlated properties and we reduced the number of them to 90. In this way we defined each element as a 90-tuple. Afterwards, we applied principal component analysis and cluster analysis (4 similarity functions and 5 grouping methodologies). Then, we calculated a consensus tree for the 20 dendrograms generated by the CA. Afterwards, we extracted the similarity relationships from the consensus tree and built up a basis for a topology on the set of chemical elements. Finally, we calculated some topological properties (closures, derived sets, boundaries, interiors and exteriors) of several subsets of chemical elements. We found that alkali metals, alkaline earth metals and noble gases appear not related to the rest of the elements. Also, we found that the boundary of non-metals are the semimetals with a stair-shape on the periodic table

Keywords

chemical elements periodic table topology cluster analysis chemotopology 

AMS subject classification

54A10 05C05 80A50 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mazurs E.G. (1974). Graphic Representations of the Periodic System During One Hundred Years. University Alabama Press, AlabamaGoogle Scholar
  2. 2.
    Rayner-Canham G. and Oberton T. (2002). Descriptive Inorganic Chemistry. Freeman, New YorkGoogle Scholar
  3. 3.
    D.I. Mendeleev, Zeitschrift für Chemie 12 (1869) 405. (http://webserver.lemoyne.edu/faculty/giunta/mendeleev.html (accessed Apr. 2005)).Google Scholar
  4. 4.
    Scerri E.R., Kreinovich V., Wojciechowski P. and Yager R.R. (1998). Int J Uncert Fuzz Know-Based Syst. 6: 387CrossRefGoogle Scholar
  5. 5.
    Négadi T. (2000). Int. J. Quantum Chem. 78: 206CrossRefGoogle Scholar
  6. 6.
    Zhou X.-Z., Wei K.-H., Chen G.-Q., Fan Z.-X. and Zhan J.-J. (2000). Jisuanji Yu Yingyong Huaxue 17: 167Google Scholar
  7. 7.
    Sneath P.H.A. (2000). Found Chem. 2: 237CrossRefGoogle Scholar
  8. 8.
    Restrepo G., Mesa H., Llanos E.J., Villaveces J.L. (2004). J. Chem. Inf. Comput. Sci. 44: 68CrossRefGoogle Scholar
  9. 9.
    Restrepo G., Mesa H., Llanos E.J., and Villaveces J.L., in: The Mathematics of the Periodic Table, eds. King R.B., and Rouvray D., (Nova, New York, 2005).Google Scholar
  10. 10.
    Restrepo G., Mesa H., Llanos E.J., and Villaveces J.L., in: Proceedings of The Third Joint Sheffield Conference on Chemoinformatics, (The University of Sheffield, Sheffiield, 2004).Google Scholar
  11. 11.
    Restrepo G., Villaveces J.L. (2005). Croat. Chem. Acta 78: 275Google Scholar
  12. 12.
    Restrepo G., Llanos E.J., and Mesa H., in: Proceedings of the International Conference of Computational Methods in Sciences and Engineering 2004 (Armonia, Attica, 2004).Google Scholar
  13. 13.
    Otto M. (1999). Chemometrics: Statistics and Computer Application in Analytical Chemistry. Wiley-VCH, WeinheimGoogle Scholar
  14. 14.
    Brereton R.G. (2004). Chemometrics: Data Analysis for the Laboratory and Chemical Plant. Wiley, ChichesterGoogle Scholar
  15. 15.
    Everitt B.S. (2001). Cluster Analysis. Arnold Publishers, CornwallGoogle Scholar
  16. 16.
    Aldenderfer M.S., Blashfield R.K., Cluster Analysis (Sage University Paper series on Quantitative Applications in the Social Sciences, No. 44), (Sage Publications, Newbury Park, 1984).Google Scholar
  17. 17.
    Restrepo G., Mesa H., and Villaveces J.L., On the Topological Sense of Chemical Sets, J. Math. Chem. In press.Google Scholar
  18. 18.
    Hawkes S.J. (2001). J Chem Edu. 78: 1686Google Scholar
  19. 19.
    Firestone R.B. (1996). Table of Isotopes. 8th ed. Wiley-Interscience, New YorkGoogle Scholar
  20. 20.
    Rodgers G.E. (1995). Química Inorgánica. McGraw-Hill, MadridGoogle Scholar
  21. 21.
    Sanderson R.T. (1960). Chemical Periodicity. Reinhold Publishing Corporation, New YorkGoogle Scholar
  22. 22.
    Lide D.R. (2002). CRC Handbook of Chemistry and Physics, 83rd ed. CRC Press, Cleveland (http://www.hbcpnetbase.com/)Google Scholar
  23. 23.
    http://www.chemicool.com/ (April 2, 2005).Google Scholar
  24. 24.
    Railsback L.B. (2003). Geology 31:737CrossRefGoogle Scholar
  25. 25.
    Cruz-Garritz D., Chamizo J.A., Garritz A. (1991). Estructura Atómica: Un Enfoque Químico. Addison-Wesley Iberoamericana, WilmingtonGoogle Scholar
  26. 26.
    University of Split, Faculty of Chemical Technology, Periodic Table. (http://www. ktf-split.hr/periodni/en/index.html (April 2, 2005))Google Scholar
  27. 27.
    Dunteman G.H. (1989). Principal Components Analysis. (Sage University Paper series on Quantitative Applications in the Social Sciences, No. 07-069). Sage Publications, Newbury ParkGoogle Scholar
  28. 28.
    Lance G.N., and Williams W.T. (1967). Computer J 9:373Google Scholar
  29. 29.
    Mendelson B. (1990). Introduction to Topology. Dover, New YorkGoogle Scholar
  30. 30.
    Willet P. (1998). J. Chem. Inf. Comput. Sci 38:983Google Scholar
  31. 31.
    Carbó R., Domingo L. (1987). Int. J. Quantum. Chem. 32:517CrossRefGoogle Scholar
  32. 32.
    Page R.D.M. (1996). Comput. Appl. Biosci 12:357Google Scholar
  33. 33.
    Felsenstein J. (2004). Inferring Phylogenies. Sinauer, SunderlandGoogle Scholar
  34. 34.
    R.D.M. Page, COMPONENT User’s Manual (Release 1.5) (University of Auckland, Auckland, 1989) (http://taxonomy.zoology.gla.ac.uk/rod/cpw.html.)Google Scholar
  35. 35.
    Rayner-Canham G. (2000). J. Chem. Edu. 77:1053CrossRefGoogle Scholar
  36. 36.
    Greenwood N.N., and Earnshaw A. (2002). Chemistry of the Elements. Butterworth Heinemann, OxfordGoogle Scholar
  37. 37.
    Klemm W. (1950). Angew Chem 62:133CrossRefGoogle Scholar
  38. 38.
    King R.B., in: The Mathematics of the Periodic Table, eds. King R.B., and D. Rouvray (Nova, New York, 2005).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Guillermo Restrepo
    • 1
  • Eugenio J. Llanos
    • 2
  • Héber Mesa
    • 3
  1. 1.Laboratorio de Química TeóricaUniversidad de PamplonaPamplonaColombia
  2. 2.Observatorio Colombiano de Ciencia y TecnologíaBogotáColombia
  3. 3.Departamento de MatemáticasUniversidad del ValleCaliColombia

Personalised recommendations