Journal of Mathematical Chemistry

, Volume 39, Issue 1, pp 47–56 | Cite as

Self-similar power transforms in extrapolation problems

  • S. Gluzman
  • V. I. YukalovEmail author


A method is suggested allowing for the improvement of accuracy of self-similar factor and root approximants, constructed from asymptotic series. The method is based on performing a power transforms of the given asymptotic series, with the power of this transformation being a control function. The latter is defined by a fixed-point condition, which improves the convergence of the sequence of the resulting approximants. The method makes it possible to extrapolate the behaviour of a function, given as an expansion over a small variable, to the region of the large values of this variable. Several examples illustrate the effectiveness of the method


power series resummation and renormalization methods extrapolation methods self-similar approximants computational methods 

AMS Subject Classification

40A05 40A25 40A30 40G99 40H05 41A05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baker G.A., Graves-Moris P. (1996). Padé Approximants. Cambridge University, CambridgeGoogle Scholar
  2. 2.
    Zinn-Justin J. (1996). Quantum Field Theory and Critical Phenomena. Clarendon, OxfordGoogle Scholar
  3. 3.
    Yukalov V.I. (1976). Moscow Univ Phys Bull 31:10Google Scholar
  4. 4.
    Yukalov V.I., Yukalova E.P. (2002). Chaos Solitons Fractals 14:839CrossRefGoogle Scholar
  5. 5.
    Kleinert H. (2004). Path Integrals in Quantum Mechanics, Statistics, Polymer Physics and Financial Markets. World Scientific, SingaporeGoogle Scholar
  6. 6.
    Yukalov V.I. (1990). Physica A 167:833CrossRefGoogle Scholar
  7. 7.
    Yukalov V.I. (1990). Phys Rev A 42:3324CrossRefGoogle Scholar
  8. 8.
    Yukalov V.I. (1991). J. Math Phys 32:1235CrossRefGoogle Scholar
  9. 9.
    Yukalov V.I. (1992). J Math Phys 33:3994CrossRefGoogle Scholar
  10. 10.
    Yukalov V.I., Yukalova E.P. (1996). Physica A 225:336CrossRefGoogle Scholar
  11. 11.
    Yukalov V.I., Yukalova E.P. (1999). Ann Phys 277:219CrossRefGoogle Scholar
  12. 12.
    Yukalov V.I., Gluzman S. (1997). Phys. Rev. Lett 79:333CrossRefGoogle Scholar
  13. 13.
    Gluzman S., Yukalov V.I. (1997). Phys Rev E 55:3983CrossRefGoogle Scholar
  14. 14.
    Yukalov V.I., Gluzman S. (1997). Phys Rev E 55:6552CrossRefGoogle Scholar
  15. 15.
    Yukalov V.I., Gluzman S. (1998). Phys. Rev. E 58:1359CrossRefGoogle Scholar
  16. 16.
    Gluzman S., Yukalov V.I. (1998). Phys Rev E 58:4197CrossRefGoogle Scholar
  17. 17.
    Yukalov V.I., Yukalova E.P., Gluzman S. (1998). Phys. Rev. A 58:96CrossRefGoogle Scholar
  18. 18.
    Yukalov V.I., Gluzman S. (1999). Physica A 273:401CrossRefGoogle Scholar
  19. 19.
    Gluzman S., Yukalov V.I., Sornette D. (2003). Phys. Rev. E 67:026109CrossRefGoogle Scholar
  20. 20.
    Yukalov V.I., Gluzman S., Sornette D. (2003). Physica A 328:409CrossRefGoogle Scholar
  21. 21.
    Yukalov V.I., Gluzman S. (2004). Int J Mod Phys B 18:3027CrossRefGoogle Scholar
  22. 22.
    Bender C.M., Boettcher S. (1994). J Math Phys 35:1914CrossRefGoogle Scholar
  23. 23.
    Landau L.D., Lifshitz E.M. (1976). Statistical Physics. Nauka, MoscowGoogle Scholar
  24. 24.
    Courteille P.W., Bagnato V.S., Yukalov V.I. (2001). Laser Phys 11:659Google Scholar
  25. 25.
    Andersen J.O. (2004). Rev Mod Phys 76:599CrossRefGoogle Scholar
  26. 26.
    Bongs K., Sengstock K. (2004). Rep. Prog. Phys 67:907CrossRefGoogle Scholar
  27. 27.
    Yukalov V.I. (2004). Laser Phys Lett. 1:435CrossRefGoogle Scholar
  28. 28.
    Ledowski S., Hasselmann N., Kopietz P. (2004). Phys Rev A 69:061601CrossRefGoogle Scholar
  29. 29.
    Blaizot J.P., Galain R.M., Wschebor N., e-print cond-mat/0412481 (2004).Google Scholar
  30. 30.
    Arnold P., Moore G. (2001). Phys Rev Lett 87:120401CrossRefGoogle Scholar
  31. 31.
    Arnold P., Moore G. (2001). Phys. Rev. E 64:066113CrossRefGoogle Scholar
  32. 32.
    Kashurnikov V.A., Prokofiev N., Svistunov B. (2001). Phys. Rev. Lett. 87:120402CrossRefGoogle Scholar
  33. 33.
    Prokofiev N., Svistunov B. (2001). Phys. Rev. Lett 87:160601CrossRefGoogle Scholar
  34. 34.
    Nho K., Landau D.P. (2004). Phys. Rev. A 70:053614CrossRefGoogle Scholar
  35. 35.
    Kastening B. (2004). Laser Phys. 14:586Google Scholar
  36. 36.
    Kastening B. (2004). Phys. Rev. A 69:043613CrossRefGoogle Scholar
  37. 37.
    Kastening B. (2004). Phys. Rev. A 70:043621CrossRefGoogle Scholar
  38. 38.
    Kneur J.L., Neveu A., Pinto M.B. (2004). Phys. Rev. A 69:053624CrossRefGoogle Scholar
  39. 39.
    Kneur J.L., Pinto M.B. (2005). Phys. Rev. A 71:033613CrossRefGoogle Scholar
  40. 40.
    Lam P.M. (1990). J. Chem. Phys 92:3136CrossRefGoogle Scholar
  41. 41.
    Miller J.D. (1991). Europhys Lett. 16:623CrossRefGoogle Scholar
  42. 42.
    Des Cloizeax J., Jannink G. (1990). Polymers in Solutions, Their Modelling and Structure. Clarendon, OxfordGoogle Scholar
  43. 43.
    Muthukumar M., Nickel B.G. (1984). J. Chem. Phys 80:5839CrossRefGoogle Scholar
  44. 44.
    Muthukumar M., Nickel B.G. (1987). J. Chem. Phys 86:460CrossRefGoogle Scholar
  45. 45.
    Li B., Madras N., Sokal A.D. (1995). J. Stat. Phys 80:661CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Corporate HeadquatersGeneration 5 Mathematical Technologies Inc.TorontoCanada
  2. 2.Institut für Theoretische PhysikFreie Universität BerlinBerlinGermany
  3. 3.Bogolubov Laboratory of Theoretical PhysicsJoint Institute for Nuclear ResearchDubnaRussia

Personalised recommendations