Advertisement

Doping of Sm3Ba5Cu8O19 Compound with Praseodymium

  • M. SandoghchiEmail author
  • M. Akhavan
Article

Abstract

An investigation has been carried out on the effects of praseodymium doping in Sm3−xPrxBa5Cu8O19 for different values of x. Results indicate that the transition temperature reduces almost linearly with x. Based on the Abrikosov–Gor’kov pair-breaking theory, it has been concluded that the exchange interaction constant is large (Jex = 110 meV) in the Sm3Ba5Cu8O19 compound. In addition, it seems that the hybridization of Pr4f states with O2p–Cu3d states has an important role in the depression of transition temperature of Sm3−xPrxBa5Cu8O19 for the Pr content < 10%. However, for the higher values of Pr, the two observed plateaus at the transition temperatures of ~ 60 K and ~ 17 K, respectively, resemble the structural phase transitions due to oxygen reduction in the YBa2Cu3O7 compound and the antiferromagnetic phase formation in the PrBa2Cu3O7 compound. It seems that depending on the Pr content, the pair-breaking, structural effects and hole localization are responsible for the reduction in the transition temperature.

Keywords

Cuprate Superconductor Pair-breaking Transition temperature Praseodymium 

Notes

References

  1. 1.
    M.B. Maple, Y. Dalichaouch, J.M. Ferreira, R.R. Hake, B.W. Lee, J.J. Neumeier, M.S. Torikachvili, K.N. Yang, H. Zhou, R.P. Guertin, M.V. Kuric, Physics BC 148, 155 (1987)ADSGoogle Scholar
  2. 2.
    J.M.S. Skakle, Mater. Sci. Eng. R Rep. 23, 1 (1998)CrossRefGoogle Scholar
  3. 3.
    H.B. Radousky, J. Mater. Res. 7, 1917 (1992)ADSCrossRefGoogle Scholar
  4. 4.
    M.B. Maple, B.W. Lee, J.J. Neumeier, G. Nieva, L.M. Paulius, C.L. Seaman, J. Alloys Compd. 181, 135 (1992)CrossRefGoogle Scholar
  5. 5.
    Z. Yamani, M. Akhavan, Phys. C Supercond. 268, 78 (1996)ADSCrossRefGoogle Scholar
  6. 6.
    M.B. Maple, Handbook on the Physics and Chemistry of Rare Earths (Elsevier, Amsterdam, 2000), pp. 1–30Google Scholar
  7. 7.
    M. Akhavan, Phys. B Condens. Matter 321, 265 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    Y. Xu, W. Guan, Phys. Rev. B 45, 3176 (1992)ADSCrossRefGoogle Scholar
  9. 9.
    J. Fink, N. Nücker, H. Romberg, M. Alexander, M.B. Maple, J.J. Neumeier, J.W. Allen, Phys. Rev. B 42, 4823 (1990)ADSCrossRefGoogle Scholar
  10. 10.
    J.J. Neumeier, T. Bjørnholm, M.B. Maple, I.K. Schuller, Phys. Rev. Lett. 63, 2516 (1989)ADSCrossRefGoogle Scholar
  11. 11.
    J.J. Neumeier, M.B. Maple, Phys. C Supercond. 191, 158 (1992)ADSCrossRefGoogle Scholar
  12. 12.
    P. Fulde, Mod. Phys. Lett. B 24, 2601 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    I.I. Mazin, AIP Conf. Proc. 483, 79 (1999)ADSCrossRefGoogle Scholar
  14. 14.
    K. Yoshida, Phys. Rev. B 60, 9325 (1999)ADSCrossRefGoogle Scholar
  15. 15.
    K. Yoshida, Phys. Rev. B 76, 024514 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    K. Yoshida, K. Ota, J. Phys. Condens. Matter 22, 465702 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    D.P. Norton, D.H. Lowndes, B.C. Sales, J.D. Budai, B.C. Chakoumakos, H.R. Kerchner, Phys. Rev. Lett. 66, 1537 (1991)ADSCrossRefGoogle Scholar
  18. 18.
    M. Calamiotou, A. Gantis, I. Margiolaki, D. Palles, E. Siranidi, E. Liarokapis, J. Phys. Condens. Matter 20, 395224 (2008)CrossRefGoogle Scholar
  19. 19.
    M.R. Mohammadizadeh, M. Akhavan, Phys. B Condens. Matter 336, 410 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    M.R. Mohammadizadeh, M. Akhavan, Phys. Rev. B 68, 104516 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    H.A. Blackstead, J.D. Dow, Solid State Commun. 115, 137 (2000)ADSCrossRefGoogle Scholar
  22. 22.
    H.A. Blackstead, D.B. Chrisey, J.D. Dow, J.S. Horwitz, A.E. Klunzinger, D.B. Pulling, Phys. Lett. A 207, 109 (1995)ADSCrossRefGoogle Scholar
  23. 23.
    H. Yamaoka, H. Oohashi, I. Jarrige, T. Terashima, Y. Zou, H. Mizota, S. Sakakura, T. Tochio, Y. Ito, E.Ya. Sherman, A. Kotani, Phys. Rev. B 77, 045135 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    R. Fehrenbacher, T.M. Rice, Phys. Rev. Lett. 70, 3471 (1993)ADSCrossRefGoogle Scholar
  25. 25.
    F.C. Zhang, T.M. Rice, Phys. Rev. B 37, 3759 (1988)ADSCrossRefGoogle Scholar
  26. 26.
    I.I. Mazin, Phys. Rev. B 60, 92 (1999)ADSCrossRefGoogle Scholar
  27. 27.
    Y. Wang, H. Rushan, Z.-B. Su, Phys. Rev. B 50, 10350 (1994)ADSCrossRefGoogle Scholar
  28. 28.
    A.I. Liechtenstein, I.I. Mazin, Phys. Rev. Lett. 74, 1000 (1995)ADSCrossRefGoogle Scholar
  29. 29.
    Z. Homonnay, Z. Klencsár, V. Chechersky, Gy. Vankó, M. Gál, E. Kuzmann, S. Tyagi, J.-L. Peng, R.L. Greene, A. Vértes, A. Nath, Phys. Rev. B 59, 11596 (1999)ADSCrossRefGoogle Scholar
  30. 30.
    I.I. Mazin, A.I. Liechtenstein, Phys. Rev. B 57, 150 (1998)ADSCrossRefGoogle Scholar
  31. 31.
    Y. Yu, G. Cao, Z. Jiao, Phys. Rev. B 59, 3845 (1999)ADSCrossRefGoogle Scholar
  32. 32.
    A. Aliabadi, Y. Akhavan Farshchi, M. Akhavan, Phys. C Supercond. 469, 2012 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    A. Aliabadi, Y. Akhavan-Farshchi, M. Akhavan, J. Supercond. Nov. Magn. 27, 741 (2014)CrossRefGoogle Scholar
  34. 34.
    A. Tavana, M. Akhavan, Eur. Phys. J. B 73, 79 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    S. Gholipour, V. Daadmehr, A.T. Rezakhani, H. Khosroabadi, F. Shahbaz Tehrani, R. Hosseini Akbarnejad, J. Supercond. Nov. Magn. 25, 2253 (2012)CrossRefGoogle Scholar
  36. 36.
    H. Khosroabadi, M. Rasti, M. Akhavan, Phys. C Supercond. Appl. 497, 84 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    P. Udomsamuthirun, T. Kruaehong, T. Nilkamjon, S. Ratreng, J. Supercond. Nov. Magn. 23, 1377 (2010)CrossRefGoogle Scholar
  38. 38.
    S.P.K. Naik, M. Santosh, J. Supercond. Nov. Magn. 31, 3415 (2018)CrossRefGoogle Scholar
  39. 39.
    S. Bolat, S. Kutuk, J. Supercond. Nov. Magn. 25, 731 (2012)CrossRefGoogle Scholar
  40. 40.
    P. Udomsamuthirun, T. Kruaehong, T. Nilkamjon, S. Ratreng, ArXiv Prepr. ArXiv09114524 (2009)Google Scholar
  41. 41.
    A.O. Ayaş, A. Ekicibil, S.K. Çetin, A. Coşkun, A.O. Er, Y. Ufuktepe, T. Fırat, K. Kıymaç, J. Supercond. Nov. Magn. 24, 2243 (2011)CrossRefGoogle Scholar
  42. 42.
    A. Esmaeili, H. Sedghi, M.M. Golzan, M. Amniat-Talab, J. Supercond. Nov. Magn. 24, 2237 (2011)CrossRefGoogle Scholar
  43. 43.
    K. Srinivasan, C. George Thomas, P. Padaikathan et al., J. Miner. Mater. Charact. Eng. 10, 1277 (2011)Google Scholar
  44. 44.
    S. Sujinnapram, P. Udomsamuthirun, T. Kruaehong, T. Nilkamjon, S. Ratreng, Bull. Mater. Sci. 34, 1053 (2011)CrossRefGoogle Scholar
  45. 45.
    U. Topal, M. Akdogan, H. Ozkan, J. Supercond. Nov. Magn. 24, 2099 (2011)CrossRefGoogle Scholar
  46. 46.
    N. Akduran, J. Low Temp. Phys. 168, 323 (2012)ADSCrossRefGoogle Scholar
  47. 47.
    N. Akduran, Radiat. Eff. Defects Solids 167, 281 (2012)ADSCrossRefGoogle Scholar
  48. 48.
    M.A. Aksan, O. Kizilaslan, E.N. Aksan, M.E. Yakinci, Phys. B Condens. Matter 407, 2820 (2012)ADSCrossRefGoogle Scholar
  49. 49.
    J. Konne, S.A. Davis, S. Glatzel, M.R. Lees, S.R. Hall, Supercond. Sci. Technol. 25, 115005 (2012)ADSCrossRefGoogle Scholar
  50. 50.
    D.A. LandíNez TéLlez, M. Cabrera BáEz, J. Roa-Rojas, Mod. Phys. Lett. B 26, 1250067 (2012)ADSCrossRefGoogle Scholar
  51. 51.
    M.S.M. Suan, M.R. Johan, T. Chua Siang, Phys. C Supercond. 480, 75 (2012)ADSCrossRefGoogle Scholar
  52. 52.
    J. Konne, S.A. Davis, S. Glatzel, M.R. Lees, S.R. Hall, Supercond. Sci. Technol. 26, 109501 (2013)ADSCrossRefGoogle Scholar
  53. 53.
    D. Martinez Buitrago, N.C. Reyes-Suarez, J.P. Peña, O. Ortiz-Diaz, J. Otálora, C.A. Parra Vargas, J. Supercond. Nov. Magn. 26, 2269 (2013)CrossRefGoogle Scholar
  54. 54.
    K. Srinivasan, C. George Thomas, P. Padaikathan, N.V. Ashoka, Int. J. Eng. Res. Appl. IJERA 3, 927 (2013)Google Scholar
  55. 55.
    F.T. Dias, C.P. Oliveira, V.N. Vieira, D.L. Silva, F. Mesquita, M.L. Almeida, J. Schaf, P. Pureur, J. Phys. Conf. Ser. 568, 022009 (2014)CrossRefGoogle Scholar
  56. 56.
    T. Kruaehong, Int. J. Phys. Sci. 9, 360 (2014)CrossRefGoogle Scholar
  57. 57.
    M. Rekaby, M. Roumié, A. Abou-Aly, R. Awad, M. Yousry, J. Supercond. Nov. Magn. 27, 2385 (2014)CrossRefGoogle Scholar
  58. 58.
    Y. Slimani, E. Hannachi, M.K. Ben Salem, A. Hamrita, A. Varilci, W. Dachraoui, M. Ben Salem, F. Ben Azzouz, Phys. B Condens. Matter 450, 7 (2014)ADSCrossRefGoogle Scholar
  59. 59.
    D. Wang, A. Sun, P. Shi, M. Zhang, S. Ma, J. Supercond. Nov. Magn. 27, 2365 (2014)CrossRefGoogle Scholar
  60. 60.
    J. Amado, R. Sarmago, J. Supercond. Nov. Magn. 28, 3455 (2015)CrossRefGoogle Scholar
  61. 61.
    T. Kruaehong, J. Aust. Ceram. Soc. 51, 109 (2015)Google Scholar
  62. 62.
    J.L. Pimentel, D. Martinez Buitrago, I. Supelano, C.A. Parra Vargas, F.R. Mesquita, P. Pureur, J. Supercond. Nov. Magn. 28, 509 (2015)CrossRefGoogle Scholar
  63. 63.
    Y. Slimani, E. Hannachi, A. Hamrita, M.K. Ben Salem, M. Zouaoui, M. Ben Salem, F. Ben Azzouz, J. Supercond. Nov. Magn. 28, 487 (2015)CrossRefGoogle Scholar
  64. 64.
    N. Zarabinia, V. Daadmehr, F.S. Tehrani, M. Abbasi, Procedia Mater. Sci. 11, 242 (2015)CrossRefGoogle Scholar
  65. 65.
    M.Me. Barakat, A.I. Abou-Aly, R. Awad, N.S. Aly, S. Ibrahim, Int. J. Mod. Phys. B 30, 1650115 (2016)ADSCrossRefGoogle Scholar
  66. 66.
    M. Başoğlu, I. Düzgün, J. Supercond. Nov. Magn. 29, 1737 (2016)CrossRefGoogle Scholar
  67. 67.
    T. Kruaehong, S. Sujinnapram, T. Nilkamjon, S. Ratreng, P. Udomsamuthirun, J. Aust. Ceram. Soc. 53, 3 (2017)CrossRefGoogle Scholar
  68. 68.
    S. Pavan Kumar Naik, M. Santosh, P.M. Swarup Raju, J. Supercond. Nov. Magn. 31, 1279 (2017)CrossRefGoogle Scholar
  69. 69.
    A.O. Pilipenko, S.A. Nedilko, A.G. Dziazko, I.V. Fesich, Theor. Exp. Chem. 52, 342 (2017)CrossRefGoogle Scholar
  70. 70.
    Y. Slimani, E. Hannachi, M. Zouaoui, F.B. Azzouz, M.B. Salem, J. Supercond. Nov. Magn. 31, 2339 (2017)CrossRefGoogle Scholar
  71. 71.
    S. Aghabagheri, M.R. Mohammadizadeh, P. Kameli, H. Salamati, Phys. C Supercond. Appl. 549, 4 (2018)ADSCrossRefGoogle Scholar
  72. 72.
    M.M. Dihom, A.H. Shaari, H. Baqiah, C.S. Kien, R.S. Azis, R. Abd-Shukor, N.M. Al-Hada, M.M.A. Kechik, Z.A. Talib, J. Supercond. Nov. Magn. 32, 1875 (2018)CrossRefGoogle Scholar
  73. 73.
    İ. Düzgün, Turk. J. Phys. 42, 378 (2018)CrossRefGoogle Scholar
  74. 74.
    J. Rodriguez, A. Lazo, J. Phys. Conf. Ser. 1143, 012029 (2018)CrossRefGoogle Scholar
  75. 75.
    M.Z. Shoushtari, G. Heidarzadeh, S.E.M. Ghahfarokhi, J. Supercond. Nov. Magn. 3, 3475 (2018)CrossRefGoogle Scholar
  76. 76.
    Y. Slimani, E. Hannachi, A. Hamrita, M.K. Ben Salem, F. Ben Azzouz, A. Manikandan, M. Ben Salem, Ceram. Int. 44, 19950 (2018)CrossRefGoogle Scholar
  77. 77.
    Y. Slimani, E. Hannachi, F.B. Azzouz, M.B. Salem, Nanotechnol. Sci. Eng. 1, 11 (2018)Google Scholar
  78. 78.
    Y. Slimani, E. Hannachi, F.B. Azzouz, M.B. Salem, Cryogenics 92, 5 (2018)ADSCrossRefGoogle Scholar
  79. 79.
    Y. Slimani, E. Hannachi, M.K. Ben Salem, F. Ben Azzouz, M. Ben Salem, Appl. Phys. A 124, 91 (2018)ADSCrossRefGoogle Scholar
  80. 80.
    O. Ozturk, R.A.M. Arebat, A.R.A. Nefrow, F. Bulut, G. Guducu, E. Asikuzun, S. Celik, J. Mater. Sci. Mater. Electron. 30, 7400 (2019)CrossRefGoogle Scholar
  81. 81.
    M. Rekaby, R. Awad, A.I. Abou-Aly, M. Yousry, J. Supercond. Nov. Magn. 32, 3483 (2019)CrossRefGoogle Scholar
  82. 82.
    A. Ekicibil, S.K. Cetin, A.O. Ayaş, A. Coşkun, T. Fırat, K. Kıymac, Solid State Sci. 13, 1954 (2011)ADSCrossRefGoogle Scholar
  83. 83.
    U. Topal, M. Akdogan, J. Supercond. Nov. Magn. 25, 239 (2012)CrossRefGoogle Scholar
  84. 84.
    D.A. Castellanos Coronado, F. Maloberti, E. Bonizzoni, Cult. Cient. 14, 104 (2016)Google Scholar
  85. 85.
    L. Lutterotti, S. Matthies, H.-R. Wenk, A.S. Schultz, J.W. Richardson, J. Appl. Phys. 81, 594 (1997)ADSCrossRefGoogle Scholar
  86. 86.
    L. Lutterotti, D. Chateigner, S. Ferrari, J. Ricote, Thin Solid Films 450, 34 (2004)ADSCrossRefGoogle Scholar
  87. 87.
    L. Lutterotti, MAUD: Material Analysis Using Diffraction, http://maud.radiographema.eu/. Accessed 21 Dec 2019
  88. 88.
    H. Suematsu, M. Kawano, T. Onda, T. Akao, M. Hayakawa, H. Ogiwara, M. Karppinen, H. Yamauchi, Phys. C Supercond. 324, 161 (1999)ADSCrossRefGoogle Scholar
  89. 89.
    R.D. Shannon, Acta Crystallogr. A 32, 751 (1976)ADSCrossRefGoogle Scholar
  90. 90.
    S.K. Malik, C.V. Tomy, P. Bhargava, Phys. Rev. B 44, 7042 (1991)ADSCrossRefGoogle Scholar
  91. 91.
    J.J. Neumeier, M.B. Maple, M.S. Torikachvili, Phys. C Supercond. 156, 574 (1988)ADSCrossRefGoogle Scholar
  92. 92.
    A.A. Abrikosov, L.P. Gor’kov, Sov. Phys. JETP 12, 1243 (1961)Google Scholar
  93. 93.
    A.A. Abrikosov, Sov. Phys. Uspekhi 12, 168 (1969)ADSCrossRefGoogle Scholar
  94. 94.
    A.A. Abrikosov, A. Beknazarov, Fundamentals of the Theory of Metals, Dover edn. (Dover Publications Inc, Mineola, NY, 2017)Google Scholar
  95. 95.
    S.K. Malik, A.M. Umarji, G.K. Shenoy, Phys. Rev. B 32, 4426 (1985)ADSCrossRefGoogle Scholar
  96. 96.
    H. Iwasaki, Y. Dalichaouch, J.T. Markert, G. Nieva, C.L. Seaman, M.B. Maple, Phys. C Supercond. 169, 146 (1990)ADSCrossRefGoogle Scholar
  97. 97.
    R.J. Cava, A.W. Hewat, E.A. Hewat, B. Batlogg, M. Marezio, K.M. Rabe, J.J. Krajewski, W.F. Peck Jr., L.W. Rupp Jr., Phys. C Supercond. 165, 419 (1990)ADSCrossRefGoogle Scholar
  98. 98.
    E. Kaldis, Handbook on the Physics and Chemistry of Rare Earths (Elsevier, Amsterdam, 2001), pp. 1–186Google Scholar
  99. 99.
    G. Hilscher, E. Holland-Moritz, T. Holubar, H.-D. Jostarndt, V. Nekvasil, G. Schaudy, U. Walter, G. Fillion, Phys. Rev. B 49, 535 (1994)ADSCrossRefGoogle Scholar
  100. 100.
    G. Cao, Y. Qian, Z. Chen, Y. Zhang, J. Phys. Chem. Solids 56, 981 (1995)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Magnet Research Laboratory (MRL), Department of PhysicsSharif University of TechnologyTehranIran

Personalised recommendations