Advertisement

Optical and Tunneling Studies of Energy Gap in Superconducting Niobium Nitride Films

  • Yoshinori UzawaEmail author
  • Shingo Saito
  • Wei Qiu
  • Kazumasa Makise
  • Takafumi Kojima
  • Zhen Wang
Article

Abstract

We have prepared an epitaxial niobium nitride (NbN) film and NbN/AlN/NbN tunnel junctions to investigate the energy gaps. By measuring the optical conductivity spectrum of a 41-nm-thick film with the critical temperature (TC) of about 14 K by terahertz time-domain spectroscopy, we obtained the gap frequency of about 1.2 THz. An ill-defined gap was suggested due to the broadening of the onset of absorption as the temperature increases. On the other hand, the current–voltage curve measurement of the tunnel junctions showed the current rise at the gap voltage of 5.6 mV (corresponding to 1.4 THz) with a smeared shape as the temperature increases. We found that both gap broadenings can be explained by introducing a temperature-dependent imaginary energy gap part into the superconducting energy gap, corresponding to a finite quasi-particle lifetime in the NbN films.

Keywords

Epitaxial NbN Gap broadening Quasi-particle lifetime 

Notes

Acknowledgements

This work was supported by JSPS KAKENHI Grant Numbers 18H03881 and 19H02205.

References

  1. 1.
    Z. Wang et al., J. Appl. Phys. 79, 7837 (1996)ADSCrossRefGoogle Scholar
  2. 2.
    Z. Wang et al., Appl. Phys. Lett. 70, 114 (1997)ADSCrossRefGoogle Scholar
  3. 3.
    Z. Wang et al., Appl. Phys. Lett. 102, 142604 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    Y. Uzawa et al., Appl. Phys. Lett. 73, 680 (1998)ADSCrossRefGoogle Scholar
  5. 5.
    T. Kojima et al., IEEE Trans. Appl. Supercond. 19, 405 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    Y. Uzawa et al., IEEE Trans. Appl. Supercond. 27, 1500705 (2017)CrossRefGoogle Scholar
  7. 7.
    W. Qiu et al., IEEE Trans. Appl. Supercond. 21, 135 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    Y. Uzawa et al., Physica C 494, 189 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    D.C. Mattis, J. Bardeen, Phys. Rev. 111, 412 (1958)ADSCrossRefGoogle Scholar
  10. 10.
    D. Karecki et al., Phys. Rev. B 25, 1565 (1982)ADSCrossRefGoogle Scholar
  11. 11.
    B. Mitrovic, L.A. Rozema, J. Phys. Condens. Matter 20, 015215 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    T. Noguchi et al., Physica C 469, 1585 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    T. Guruswamy, Ph.D. thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/277214
  14. 14.
    T.-M. Shen et al., Appl. Phys. Lett. 36, 777 (1980)ADSCrossRefGoogle Scholar
  15. 15.
    Y. Uzawa et al., J. Low Temp. Phys. 193, 512 (2018)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.National Astronomical Observatory of JapanMitakaJapan
  2. 2.National Institute of Information and Communications TechnologyKoganeiJapan
  3. 3.National Institute of Advanced Industrial Science and TechnologyTsukubaJapan
  4. 4.Shanghai Institute of Microsystem and Information TechnologyShanghaiChina

Personalised recommendations