High-Frequency Noise Peaks in Mo/Au Superconducting Transition-Edge Sensor Microcalorimeters

  • 26 Accesses


The measured noise in Mo/Au transition-edge sensor (TES) microcalorimeters produced at NASA has recently been shown to be well described by a two-body electro-thermal model with a finite thermal conductance between the X-ray absorber and the TES. In this article, we present observations of a high-frequency peak in the measured current noise in some of these devices. The peak is associated with an oscillatory component of the TES response that is not predicted in a single-body model but can be qualitatively described by the two-body model.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    D. Barret, T.L. Trong, J.-W. den Herder, L. Piro, X. Barcons, J. Huovelin, R. Kelley, J.M. Mas-Hesse, K. Mitsuda, S. Paltani, G. Rauw, A. Rożanska, J. Wilms, M. Barbera, E. Bozzo, M.T. Ceballos, I. Charles, A. De- courchelle, R. den Hartog, J.-M. Duval, F. Fiore, F. Gatti, A. Goldwurm, B. Jackson, P. Jonker, C. Kilbourne, C. Macculi, M. Mendez, S. Molendi, P. Orleanski, F. Pajot, E. Pointecouteau, F. Porter, G.W. Pratt, D. Prêle, L. Ravera, E. Renotte, J. Schaye, K. Shinozaki, L. Valenziano, J. Vink, N. Webb, N. Yamasaki, F. Delcelier-Douchin, M.L. Du, J.-M. Mes-nager, A. Pradines, G. Branduardi-Raymont, M. Dadina, A. Finoguenov, Y. Fukazawa, A. Janiuk, J. Miller, Y. Nazé, F. Nicastro, S. Sciortino, J.M. Torrejon, H. Geoffray, I. Hernandez, L. Luno, P. Peille, J. André, C. Daniel, C. Etcheverry, E. Gloaguen, J. Hassin, G. Hervet, I. Maussang, J. Moueza, A. Paillet, B. Vella, G.C. Garrido, J.-C. Damery, C. Panem, J. Panh, S. Ban- dler, J.-M. Biffi, K. Boyce, A. Clénet, M. DiPirro, P. Jamotton, S. Lotti, D. Schwander, S. Smith, B.-J. van Leeuwen, H. van Weers, T. Brand, B. Cobo, T. Dauser, J. de Plaa, E. Cucchetti, Proc. SPIE, 9905, 9905 (2016).

  2. 2.

    M.A. Lindeman, S. Bandler, R.P. Brekosky, J.A. Chervenak, E. Figueroa-Feliciano, F.M. Finkbeiner, M.J. Li, C.A. Kilbourne, Rev. Sci. Instrum. 75, 1283 (2004).

  3. 3.

    K. Irwin, Nucl. Instrum. Methods Phys. Res. Sect. A 559, 718 (2006).

  4. 4.

    S.J. Smith, J.S. Adams, C.N. Bailey, S.R. Bandler, S.E. Busch, J.A. Chervenak, M.E. Eckart, F.M. Finkbeiner, C.A. Kilbourne, R.L. Kelley, S.-J. Lee, J.-P. Porst, F.S. Porter, J.E. Sadleir, J. Appl. Phys. 114, 074513 (2013).

  5. 5.

    J. Ullom, W. Doriese, G. Hilton, J. Beall, S. Deiker, K. Irwin, C. Reintsema, L. Vale, Y. Xu, Nucl. Instrum. Methods Phys. Res. Sect. A 520, 333 (2004).

  6. 6.

    N.A. Wakeham, J.S. Adams, S.R. Bandler, J.A. Chervenak, A.M. Datesman, M.E. Eckart, F.M. Finkbeiner, R.L. Kelley, C.A. Kilbourne, A.R. Miniussi, F.S. Porter, J.E. Sadleir, K. Sakai, S.J. Smith, E.J. Wassell, W. Yoon, J. Low Temp. Phys. 193, 231 (2018).

  7. 7.

    C.M. Knoedler, J. Appl. Phys. 54, 2773 (1983).

  8. 8.

    M. Galeazzi, I.E.E.E. Trans, Appl. Supercond. 21, 267 (2011).

  9. 9.

    M. Lindeman, Microcalorimetry and the Transition-Edge Sensor, Ph.D. thesis, University of California at Davis (2000)

  10. 10.

    H. Hoevers, A. Bento, M. Bruijn, L. Gottardi, M. Korevaar, W. Mels, P. de Korte, Nucl. Instrum. Methods Phys. Res. Sect. A 444, 192 (2000).

  11. 11.

    N.A. Wakeham, J.S. Adams, S.R. Bandler, S. Beaumont, J.A. Chervenak, A.M. Datesman, M.E. Eckart, F.M. Finkbeiner, R. Hummatov, R.L. Kelley, C.A. Kilbourne, A.R. Miniussi, F.S. Porter, J.E. Sadleir, K. Sakai, S.J. Smith, E.J. Wassell, J. Appl. Phys. 125, 164503 (2019).

  12. 12.

    K.D. Irwin, G.C. Hilton, Cryogenic Particle Detection, vol. 99 (Springer, Berlin, 2005)

  13. 13.

    I.J. Maasilta, AIP Adv. 2, 042110 (2012).

  14. 14.

    E. Figueroa-Feliciano, J. Appl. Phys. 99, 114513 (2006).

  15. 15.

    D.A. Bennett, R.D. Horansky, A.S. Hoover, N.J. Hoteling, M.W. Rabin, D.R. Schmidt, D.S. Swetz, L.R. Vale, J.N. Ullom, Appl. Phys. Lett. 97, 102504 (2010).

  16. 16.

    A. Wessels, K. Morgan, D.T. Becker, Jo.D. Gard, G.C. Hilton, J.A.B. Mates, C.D. Reintsema, D.R. Schmidt, D.S. Swetz, J.N. Ullom, L.R. Vale, D.A. Bennett, arXiv:1907.11343 [cond-mat.supr-con]

Download references


The authors wish to thank NASA’s Astrophysics Division for their generous support of this work. This work was performed in part under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Author information

Correspondence to N. A. Wakeham.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wakeham, N.A., Adams, J.S., Bandler, S.R. et al. High-Frequency Noise Peaks in Mo/Au Superconducting Transition-Edge Sensor Microcalorimeters. J Low Temp Phys (2020) doi:10.1007/s10909-019-02322-3

Download citation


  • Transition-edge sensor
  • Microcalorimeter
  • Multi-body