Advertisement

Neutrinoless Double-Beta Decay Searches with Enriched \(^{116}\hbox {CdWO}_{{4}}\) Scintillating Bolometers

  • D. L. HelisEmail author
  • I. C. Bandac
  • A. S. Barabash
  • J. Billard
  • M. Chapellier
  • M. de Combarieu
  • F. A. Danevich
  • L. Dumoulin
  • J. Gascon
  • A. Giuliani
  • D. V. Kasperovych
  • V. V. Kobychev
  • P. de Marcillac
  • S. Marnieros
  • C. Nones
  • V. Novati
  • E. Olivieri
  • D. V. Poda
  • O. G. Polischuk
  • Th. Redon
  • V. I. Tretyak
  • A. S. Zolotarova
Article
  • 14 Downloads

Abstract

Cadmium-116 is one of the favorable candidates for neutrinoless double-beta decay (\(0\nu \beta \beta \)) searches from both theoretical and experimental points of view, in particular thanks to the high energy of the decay (2813.49 keV), the possibility of the industrial enrichment in \(^{116}\mathrm{Cd}\) and its use in the well-established production of cadmium tungstate crystal scintillators. In this work, we present low-temperature tests of two \(0.6\ \mathrm{kg} \ ^{116}\hbox {CdWO}_{{4}}\) crystals enriched in \(^{116}\mathrm{Cd}\) to \(82\%\) as scintillating bolometers. These detectors were operated underground, with one at the Laboratoire Souterrain de Modane (LSM) in France and the second at the Laboratorio Subterraneo de Canfranc (LSC) in Spain. The two crystals are coupled to bolometric Ge light detectors in order to register the scintillation light. The double readout of heat and scintillation enables reduction in the background in the region of interest by discriminating between different populations of particles. The main goal of these tests is the study of the crystals’ radiopurity and the detectors’ performance. The achieved results are extremely promising, in particular, the detectors demonstrate a high energy resolution (11–16 keV FWHM at 2615 keV) and a high-efficiency discrimination of the alpha background (\(\sim 20 \sigma \)). These results, achieved for the first time with large mass enriched \(^{116}\hbox {CdWO}_{{4}}\) crystals, demonstrate prospects of the bolometric technology for high-sensitivity searches of \(^{116}\mathrm{Cd}\)\(0\nu \beta \beta \) decay.

Keywords

Scintillating bolometers Neutrinoless double-beta decay \(\mathrm{CdWO}_{4}\) 

Notes

Acknowledgements

The project CROSS is funded by the European Research Council (ERC) under the European-Union Horizon 2020 program (H2020/2014-2020) with the ERC Advanced Grant No. 742345 (ERC-2016-ADG). The authors would like to thank the EDELWEISS collaboration and the technical staff of the LSM for their support in the underground activities related to this project. A.S. Barabash acknowledges the support of Russian Scientific Foundation (Grant No. 18-12-00003). F.A. Danevich gratefully acknowledges support from the Jean d’Alembert fellowship program (Project CYGNUS) of the Paris-Saclay Excellence Initiative, Grant No. ANR-10-IDEX-0003-02.

References

  1. 1.
    V. Tretyak, Y.G. Zdesenko, At. Data Nucl. Data Table (2002).  https://doi.org/10.1006/adnd.2001.0873 CrossRefGoogle Scholar
  2. 2.
    A.S. Barabash, Nucl. Phys. A 935, 52 (2015).  https://doi.org/10.1016/j.nuclphysa.2015.01.001 ADSCrossRefGoogle Scholar
  3. 3.
    A.S. Barabash, Front. Phys. 6, 00160 (2019).  https://doi.org/10.3389/fphy.2018.00160 CrossRefGoogle Scholar
  4. 4.
    D. Poda, A. Giuliani, Int. J. Mod. Phys. A 32, 1743012 (2017).  https://doi.org/10.1142/S0217751X17430126 ADSCrossRefGoogle Scholar
  5. 5.
    C. Alduino, CUORE Collaboration et al., Phys. Rev. Lett. 120, 132501 (2018).  https://doi.org/10.1103/PhysRevLett.120.132501
  6. 6.
    V. Alenkov et al., Eur. Phys. J. C 79, 791 (2019).  https://doi.org/10.1140/epjc/s10052-019-7279-1 ADSCrossRefGoogle Scholar
  7. 7.
    O. Azzolini et al., Phys. Rev. Lett. 123, 032501 (2019).  https://doi.org/10.1103/PhysRevLett.123.032501 ADSCrossRefGoogle Scholar
  8. 8.
    E. Armengaud et al., Eur. Phys. J. C 77, 785 (2017).  https://doi.org/10.1140/epjc/s10052-017-5343-2 ADSCrossRefGoogle Scholar
  9. 9.
    E. Armengaud et al. (2019) arXiv:1909.02994 [physics.ins-det]
  10. 10.
    I.C. Bandac et al. (2019) arXiv:1906.10233 [nucl-ex]
  11. 11.
    The CUPID Interest Group (2019) arXiv:1907.09376 [physics.ins-det]
  12. 12.
    J. Engel, J. Menéndez, Rev. Prog. Phys. 80, 046301 (2017).  https://doi.org/10.1088/1361-6633/aa5bc5 ADSCrossRefGoogle Scholar
  13. 13.
    F.A. Danevich et al., Phys. Rev. C 68, 035501 (2003).  https://doi.org/10.1103/PhysRevC.68.035501 ADSCrossRefGoogle Scholar
  14. 14.
    R. Arnold, NEMO-3 Collaboration et al., Phys. Rev. D 95, 012007 (2017).  https://doi.org/10.1103/PhysRevD.95.012007
  15. 15.
    A.S. Barabash et al., Phys. Rev. D 98, 092007 (2018).  https://doi.org/10.1103/PhysRevD.98.092007 ADSCrossRefGoogle Scholar
  16. 16.
    A.S. Barabash et al., JINST 6, P08011 (2011).  https://doi.org/10.1088/1748-0221/6/08/P08011 ADSCrossRefGoogle Scholar
  17. 17.
    C. Arnaboldi et al., Astropart. Phys. 34, 143 (2010).  https://doi.org/10.1016/j.astropartphys.2010.06.009 ADSCrossRefGoogle Scholar
  18. 18.
    A.S. Barabash et al., Eur. Phys. J. C 76, 487 (2016).  https://doi.org/10.1140/epjc/s10052-016-4331-2 ADSCrossRefGoogle Scholar
  19. 19.
    A. Alessandrello et al., Nucl. Instrum. Methods A 412, 454 (1998).  https://doi.org/10.1016/S0168-9002(98)00458-6 ADSCrossRefGoogle Scholar
  20. 20.
    M. Mancuso et al., EPJ Web Conf. 65, 04003 (2014).  https://doi.org/10.1051/epjconf/20136504003 CrossRefGoogle Scholar
  21. 21.
    E. Armengaud et al., JINST 12, P08010 (2017).  https://doi.org/10.1088/1748-0221/12/08/P08010 CrossRefGoogle Scholar
  22. 22.
    E. Gatti, P. Manfredi, Riv. Nuovo Cim. 9, 1 (1986).  https://doi.org/10.1007/BF02822156 ADSCrossRefGoogle Scholar
  23. 23.
    J. Meija et al., Pure Appl. Chem. 88, 293 (2016).  https://doi.org/10.1515/pac-2015-0503 CrossRefGoogle Scholar
  24. 24.
    M. Wang et al., Chin. Phys. C 41, 030003 (2017).  https://doi.org/10.1088/1674-1137/41/3/030003 ADSCrossRefGoogle Scholar
  25. 25.
    A.S. Barabash et al., Nucl. Instrum. Methods A 833, 77 (2016).  https://doi.org/10.1016/j.nima.2016.07.025 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • D. L. Helis
    • 1
    Email author
  • I. C. Bandac
    • 2
  • A. S. Barabash
    • 3
  • J. Billard
    • 4
  • M. Chapellier
    • 5
  • M. de Combarieu
    • 7
  • F. A. Danevich
    • 6
  • L. Dumoulin
    • 5
  • J. Gascon
    • 4
  • A. Giuliani
    • 5
  • D. V. Kasperovych
    • 6
  • V. V. Kobychev
    • 6
  • P. de Marcillac
    • 5
  • S. Marnieros
    • 5
  • C. Nones
    • 1
  • V. Novati
    • 5
  • E. Olivieri
    • 5
  • D. V. Poda
    • 5
    • 6
  • O. G. Polischuk
    • 6
  • Th. Redon
    • 5
  • V. I. Tretyak
    • 6
  • A. S. Zolotarova
    • 5
  1. 1.IRFU, CEAUniversité Paris-SaclayGif-sur-YvetteFrance
  2. 2.Laboratorio Subterraneo de CanfrancCanfranc-EstaciónSpain
  3. 3.National Research Centre Kurchatov InstituteInstitute of Theoretical and Experimental PhysicsMoscowRussia
  4. 4.CNRS/IN2P3, IPN-LyonUniv Lyon, Université Lyon 1VilleurbanneFrance
  5. 5.CSNSM, Univ. Paris-Sud, CNRS/IN2P3Université Paris-SaclayOrsayFrance
  6. 6.Institute for Nuclear ResearchKievUkraine
  7. 7.IRAMIS, CEAUniversité Paris-SaclayGif-sur-YvetteFrance

Personalised recommendations