Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Neutrinoless Double-Beta Decay Searches with Enriched \(^{116}\hbox {CdWO}_{{4}}\) Scintillating Bolometers

  • 17 Accesses


Cadmium-116 is one of the favorable candidates for neutrinoless double-beta decay (\(0\nu \beta \beta \)) searches from both theoretical and experimental points of view, in particular thanks to the high energy of the decay (2813.49 keV), the possibility of the industrial enrichment in \(^{116}\mathrm{Cd}\) and its use in the well-established production of cadmium tungstate crystal scintillators. In this work, we present low-temperature tests of two \(0.6\ \mathrm{kg} \ ^{116}\hbox {CdWO}_{{4}}\) crystals enriched in \(^{116}\mathrm{Cd}\) to \(82\%\) as scintillating bolometers. These detectors were operated underground, with one at the Laboratoire Souterrain de Modane (LSM) in France and the second at the Laboratorio Subterraneo de Canfranc (LSC) in Spain. The two crystals are coupled to bolometric Ge light detectors in order to register the scintillation light. The double readout of heat and scintillation enables reduction in the background in the region of interest by discriminating between different populations of particles. The main goal of these tests is the study of the crystals’ radiopurity and the detectors’ performance. The achieved results are extremely promising, in particular, the detectors demonstrate a high energy resolution (11–16 keV FWHM at 2615 keV) and a high-efficiency discrimination of the alpha background (\(\sim 20 \sigma \)). These results, achieved for the first time with large mass enriched \(^{116}\hbox {CdWO}_{{4}}\) crystals, demonstrate prospects of the bolometric technology for high-sensitivity searches of \(^{116}\mathrm{Cd}\)\(0\nu \beta \beta \) decay.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    \(Q_{\beta \beta }(^{130}\mathrm{Te}) = 2527.51\) keV, which is above the Compton edge for \(2615\ \mathrm{keV} \gamma \) quanta.

  2. 2.

    This calibration induces a 5\(\%\) shift in energy for \(\alpha \) particles because of a thermal quenching [17].

  3. 3.

    The discrimination power is defined here as \(\hbox {DP}_{\alpha /\gamma (\beta )}=(\mu _{\gamma (\beta )}-\mu _{\alpha })/\sqrt{\sigma ^{2}_{\gamma (\beta )}+\sigma ^{2}_{\alpha }}\) where \(\mu _{\alpha }\) and \(\mu _{\gamma (\beta )}\) are the mean values of the Gaussian fit of the LY distributions and \(\sigma _{\gamma (\beta )}\) and \(\sigma _{\alpha }\) are the standard deviations.


  1. 1.

    V. Tretyak, Y.G. Zdesenko, At. Data Nucl. Data Table (2002). https://doi.org/10.1006/adnd.2001.0873

  2. 2.

    A.S. Barabash, Nucl. Phys. A 935, 52 (2015). https://doi.org/10.1016/j.nuclphysa.2015.01.001

  3. 3.

    A.S. Barabash, Front. Phys. 6, 00160 (2019). https://doi.org/10.3389/fphy.2018.00160

  4. 4.

    D. Poda, A. Giuliani, Int. J. Mod. Phys. A 32, 1743012 (2017). https://doi.org/10.1142/S0217751X17430126

  5. 5.

    C. Alduino, CUORE Collaboration et al., Phys. Rev. Lett. 120, 132501 (2018). https://doi.org/10.1103/PhysRevLett.120.132501

  6. 6.

    V. Alenkov et al., Eur. Phys. J. C 79, 791 (2019). https://doi.org/10.1140/epjc/s10052-019-7279-1

  7. 7.

    O. Azzolini et al., Phys. Rev. Lett. 123, 032501 (2019). https://doi.org/10.1103/PhysRevLett.123.032501

  8. 8.

    E. Armengaud et al., Eur. Phys. J. C 77, 785 (2017). https://doi.org/10.1140/epjc/s10052-017-5343-2

  9. 9.

    E. Armengaud et al. (2019) arXiv:1909.02994 [physics.ins-det]

  10. 10.

    I.C. Bandac et al. (2019) arXiv:1906.10233 [nucl-ex]

  11. 11.

    The CUPID Interest Group (2019) arXiv:1907.09376 [physics.ins-det]

  12. 12.

    J. Engel, J. Menéndez, Rev. Prog. Phys. 80, 046301 (2017). https://doi.org/10.1088/1361-6633/aa5bc5

  13. 13.

    F.A. Danevich et al., Phys. Rev. C 68, 035501 (2003). https://doi.org/10.1103/PhysRevC.68.035501

  14. 14.

    R. Arnold, NEMO-3 Collaboration et al., Phys. Rev. D 95, 012007 (2017). https://doi.org/10.1103/PhysRevD.95.012007

  15. 15.

    A.S. Barabash et al., Phys. Rev. D 98, 092007 (2018). https://doi.org/10.1103/PhysRevD.98.092007

  16. 16.

    A.S. Barabash et al., JINST 6, P08011 (2011). https://doi.org/10.1088/1748-0221/6/08/P08011

  17. 17.

    C. Arnaboldi et al., Astropart. Phys. 34, 143 (2010). https://doi.org/10.1016/j.astropartphys.2010.06.009

  18. 18.

    A.S. Barabash et al., Eur. Phys. J. C 76, 487 (2016). https://doi.org/10.1140/epjc/s10052-016-4331-2

  19. 19.

    A. Alessandrello et al., Nucl. Instrum. Methods A 412, 454 (1998). https://doi.org/10.1016/S0168-9002(98)00458-6

  20. 20.

    M. Mancuso et al., EPJ Web Conf. 65, 04003 (2014). https://doi.org/10.1051/epjconf/20136504003

  21. 21.

    E. Armengaud et al., JINST 12, P08010 (2017). https://doi.org/10.1088/1748-0221/12/08/P08010

  22. 22.

    E. Gatti, P. Manfredi, Riv. Nuovo Cim. 9, 1 (1986). https://doi.org/10.1007/BF02822156

  23. 23.

    J. Meija et al., Pure Appl. Chem. 88, 293 (2016). https://doi.org/10.1515/pac-2015-0503

  24. 24.

    M. Wang et al., Chin. Phys. C 41, 030003 (2017). https://doi.org/10.1088/1674-1137/41/3/030003

  25. 25.

    A.S. Barabash et al., Nucl. Instrum. Methods A 833, 77 (2016). https://doi.org/10.1016/j.nima.2016.07.025

Download references


The project CROSS is funded by the European Research Council (ERC) under the European-Union Horizon 2020 program (H2020/2014-2020) with the ERC Advanced Grant No. 742345 (ERC-2016-ADG). The authors would like to thank the EDELWEISS collaboration and the technical staff of the LSM for their support in the underground activities related to this project. A.S. Barabash acknowledges the support of Russian Scientific Foundation (Grant No. 18-12-00003). F.A. Danevich gratefully acknowledges support from the Jean d’Alembert fellowship program (Project CYGNUS) of the Paris-Saclay Excellence Initiative, Grant No. ANR-10-IDEX-0003-02.

Author information

Correspondence to D. L. Helis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Helis, D.L., Bandac, I.C., Barabash, A.S. et al. Neutrinoless Double-Beta Decay Searches with Enriched \(^{116}\hbox {CdWO}_{{4}}\) Scintillating Bolometers . J Low Temp Phys (2020). https://doi.org/10.1007/s10909-019-02315-2

Download citation


  • Scintillating bolometers
  • Neutrinoless double-beta decay
  • \(\mathrm{CdWO}_{4}\)