Advertisement

DEMETRA: Suppression of the Relaxation Induced by Radioactivity in Superconducting Qubits

  • L. CardaniEmail author
  • N. Casali
  • G. Catelani
  • T. Charpentier
  • M. Clemenza
  • I. Colantoni
  • A. Cruciani
  • L. Gironi
  • L. Gruenhaupt
  • D. Gusenkova
  • F. Henriques
  • M. Lagoin
  • M. Martinez
  • S. Pirro
  • I. M. Pop
  • C. Rusconi
  • A. Ustinov
  • F. Valenti
  • M. Vignati
  • W. Wernsdorfer
Article
  • 61 Downloads

Abstract

Non-equilibrium quasiparticles can deteriorate the performance of superconducting qubits by reducing their coherence. We are investigating a source of quasiparticles that has been too long neglected, namely radioactivity: cosmic rays, environmental radioactivity and contaminants in the materials can all generate phonons of energy sufficient to break Cooper pairs and thus increase the number of quasiparticles. In this contribution, we describe the status of the project and its perspectives.

Keywords

Quantum bits Kinetic inductance detectors Radioactivity 

Notes

Acknowledgements

This work is funded by INFN under Grant73-Demetra, and by the European Research Council (FP7/2007-2013) under contract CALDER No. 335359. We are grateful to M. Iannone for his help in designing and fabricating the components to install the microwave readout in the underground cryogenic facility. We thank the mechanical workshop of LNGS (E. Tatananni, A. Rotilio, A. Corsi and B. Romualdi) for their constructive support, and M. Guetti for the assistance in the cryogenic operations.

References

  1. 1.
    P. Krantz et al., Appl. Phys. Rev. 6, 021318 (2019).  https://doi.org/10.1063/1.5089550 ADSCrossRefGoogle Scholar
  2. 2.
    F. Arute et al., Nature 574, 505–510 (2019).  https://doi.org/10.1038/s41586-019-1666-5 ADSCrossRefGoogle Scholar
  3. 3.
    J.M. Gambetta et al., npj Quantum Inform. 3(2), 1–7 (2017).  https://doi.org/10.1038/s41534-016-0004-0
  4. 4.
    J. Burnett et al., npj Quantum Inform. 5, 54 (2019).  https://doi.org/10.1038/s41534-019-0168-5
  5. 5.
    P.V. Klimov et al., Phys. Rev. Lett. 121, 090502 (2018).  https://doi.org/10.1103/PhysRevLett.121.090502 ADSCrossRefGoogle Scholar
  6. 6.
    S.E. de Graaf et al., Nat. Commun. 9, 1143 (2018).  https://doi.org/10.1038/s41467-018-03577-2 ADSCrossRefGoogle Scholar
  7. 7.
    C. Wang et al., Nat. Commun. 5, 5836 (2014).  https://doi.org/10.1038/ncomms6836 ADSCrossRefGoogle Scholar
  8. 8.
    G. Catelani et al., Phys. Rev. B 84, 064517 (2011).  https://doi.org/10.1103/PhysRevB.84.064517 ADSCrossRefGoogle Scholar
  9. 9.
    U. Patel et al., Phys. Rev. B 96, 220501(R) (2017).  https://doi.org/10.1103/PhysRevB.96.220501 ADSCrossRefGoogle Scholar
  10. 10.
    I.M. Pop et al., Nature 508, 369–372 (2014).  https://doi.org/10.1038/nature13017 ADSCrossRefGoogle Scholar
  11. 11.
    S. Gustavsson et al., Science 354, 1573–1577 (2016).  https://doi.org/10.1126/science.aah5844 ADSCrossRefGoogle Scholar
  12. 12.
    P.J. De Visser et al., Phys. Rev. Lett. 112, 047004 (2014).  https://doi.org/10.1103/PhysRevLett.112.047004 ADSCrossRefGoogle Scholar
  13. 13.
    J.L. Swenson et al., Appl. Phys. Lett. 96, 263511 (2010).  https://doi.org/10.1063/1.3459142 ADSCrossRefGoogle Scholar
  14. 14.
    L. Gruenhaupt et al., Phys. Rev. Lett. 121, 117001 (2018).  https://doi.org/10.1103/PhysRevLett.121.117001 ADSCrossRefGoogle Scholar
  15. 15.
    P.K. Day et al., Nature 425(6960), 817–21 (2003).  https://doi.org/10.1038/nature02037 ADSCrossRefGoogle Scholar
  16. 16.
    J. Zmuidzinas, Annu. Rev. Cond. Matter Phys. 3, 169–214 (2012).  https://doi.org/10.1146/annurev-conmatphys-020911-125022 CrossRefGoogle Scholar
  17. 17.
    A. Monfardini et al., The Astroph. J. Suppl. Ser. 94(2), 24 (2011).  https://doi.org/10.1088/0067-0049/194/2/24 ADSCrossRefGoogle Scholar
  18. 18.
    B.A. Mazin et al., Publ. Astron. Soc. Pac. 125, 1348 (2013).  https://doi.org/10.1086/674013 ADSCrossRefGoogle Scholar
  19. 19.
    S. Masi et al., J. Cosmol. Astropart. Phys. 07, 003 (2019).  https://doi.org/10.1088/1475-7516/2019/07/003 ADSCrossRefGoogle Scholar
  20. 20.
    N.P. Lourie et al., Proc. SPIE 10708, 107080L (2018). [arXiv:1808.08489]Google Scholar
  21. 21.
    S. Oguri et al., J. Low. Temp. Phys. 184, 786 (2016).  https://doi.org/10.1007/s10909-015-1420-9 ADSCrossRefGoogle Scholar
  22. 22.
    A. Fasano et al., The KID Interferometric-Spectrum Survey (KISS) experiment, these proceedingsGoogle Scholar
  23. 23.
    A. Paiella et al., J. Phys. Conf. Ser. 1182(1), 012005 (2019).  https://doi.org/10.1088/1742-6596/1182/1/012005 CrossRefGoogle Scholar
  24. 24.
    A. Giachero et al., J. Low. Temp. Phys. 193(3–4), 163–169 (2018).  https://doi.org/10.1007/s10909-018-2043-83 ADSCrossRefGoogle Scholar
  25. 25.
    G. Ulbricht et al., Appl. Phys. Lett 106, 251103 (2015).  https://doi.org/10.1063/1.4923096 ADSCrossRefGoogle Scholar
  26. 26.
    S. Golwala et al., J. Low Temp. Phys. 151, 550 (2008).  https://doi.org/10.1007/s10909-007-9687-0 ADSCrossRefGoogle Scholar
  27. 27.
    D.C. Moore et al., Appl. Phys. Lett 100, 232601 (2006).  https://doi.org/10.1063/1.4726279 ADSCrossRefGoogle Scholar
  28. 28.
    I. Colantoni et al., BULLKID-Bulky and low-threshold kinetic inductance detectors, these proceedingsGoogle Scholar
  29. 29.
    E. Battistelli et al., Eur. Phys. J. C 75, 353 (2015).  https://doi.org/10.1140/epjc/s10052-015-3575-6 ADSCrossRefGoogle Scholar
  30. 30.
    L. Cardani et al., Appl. Phys. Lett 107, 093508 (2015).  https://doi.org/10.1063/1.4929977 ADSCrossRefGoogle Scholar
  31. 31.
    L. Cardani et al., Appl. Phys. Lett 110, 033504 (2017).  https://doi.org/10.1063/1.4974082 ADSCrossRefGoogle Scholar
  32. 32.
    L. Cardani et al., Supercond. Sci. Technol. 31, 075002 (2018).  https://doi.org/10.1088/1361-6668/aac1d4 ADSCrossRefGoogle Scholar
  33. 33.
    N. Casali et al., Eur. Phys. J. C 75, 724 (2019).  https://doi.org/10.1140/epjc/s10052-019-7242-1 ADSCrossRefGoogle Scholar
  34. 34.
    M. Martinez et al., Phys. Rev. Appl. 11, 064025 (2019).  https://doi.org/10.1103/PhysRevApplied.11.064025 ADSCrossRefGoogle Scholar
  35. 35.
    L. Maleeva et al., Nat. Commun. 9, 3889 (2018).  https://doi.org/10.1038/s41467-018-06386-9 ADSCrossRefGoogle Scholar
  36. 36.
    F. Valenti et al., Phys. Rev. Appl. 11, 054087 (2019).  https://doi.org/10.1103/PhysRevApplied.11.054087 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • L. Cardani
    • 1
    Email author
  • N. Casali
    • 1
  • G. Catelani
    • 2
  • T. Charpentier
    • 3
  • M. Clemenza
    • 4
    • 5
  • I. Colantoni
    • 1
    • 6
  • A. Cruciani
    • 1
  • L. Gironi
    • 4
    • 5
  • L. Gruenhaupt
    • 3
  • D. Gusenkova
    • 3
  • F. Henriques
    • 3
  • M. Lagoin
    • 3
  • M. Martinez
    • 7
    • 8
  • S. Pirro
    • 9
  • I. M. Pop
    • 3
  • C. Rusconi
    • 9
    • 10
  • A. Ustinov
    • 3
  • F. Valenti
    • 3
  • M. Vignati
    • 1
  • W. Wernsdorfer
    • 3
  1. 1.Istituto Nazionale di Fisica Nucleare - Sezione di RomaRomaItaly
  2. 2.JARA Institute for Quantum Information (PGI-11)JulichGermany
  3. 3.PHI, Karlsruhe Institute of TechnologyKarlsruheGermany
  4. 4.Dipartimento di FisicaUniversità di Milano BicoccaMilanoItaly
  5. 5.INFN Sezione di Milano - BicoccaMilanoItaly
  6. 6.Consiglio Nazionale delle Ricerche (CNR - NANOTEC)Sapienza Università di RomaRomaItaly
  7. 7.Laboratorio de Fisica Nuclear y AstroparticulasUniversidad de ZaragozaZaragozaSpain
  8. 8.Fundacion ARAIDZaragozaSpain
  9. 9.INFN Laboratori Nazionali del Gran SassoAssergiItaly
  10. 10.Department of Physics and AstronomyUniversity of South CarolinaColumbiaUSA

Personalised recommendations