Phenomenological Modeling of Magnetocaloric Properties in 0.75La0.6Ca0.4MnO3/0.25La0.6Sr0.4MnO3 Nanocomposite Manganite

  • M. JeddiEmail author
  • H. Gharsallah
  • M. Bekri
  • E. Dhahri
  • E. K. Hlil


In the current research work, a phenomenological model is applied to describe the magnetocaloric effect (MCE) of the two phases 0.75 La0.6Ca0.4MnO3/0.25 La0.6Sr0.4MnO3 composite system. Based on this model, the values of the magnetocaloric properties are predicted from the calculation of magnetization as a function of temperature under different external magnetic fields. A significant MCE is obtained over a large range of temperature compared to those observed in the mother compounds, La0.6Ca0.4MnO3 and La0.6Sr0.4MnO3, making of this material considered as a promising candidate for magnetic refrigeration applications in moderate magnetic fields near room temperature. The results are then compared to those obtained experimentally in our previous work. The excellent agreement observed between both data proves the validity of the adopted model in the estimation of the MCE properties of material under investigation.


Composite Phenomenological model Magnetocaloric effect Magnetic entropy change Relative cooling power 



  1. 1.
    K.A. Gschneidner Jr., V.K. Pecharsky, A.O. Tsokol, Rep. Prog. Phys. 68, 1479 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    K.A. Gschneidner Jr., V.K. Pecharsky, J. Appl. Phys. 85, 5365 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    S.Y. Dan’Kov, Phys Rev B 57, 3478 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    F. Casanova, X. Batlle, A. Labarta, Phys. Rev. B Condens. Matter. Mater. Phys. 66, 212402 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    M.H. Phan, S.C. Yu, J. Magn. Magn. Mater. 308, 325 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    M. Smari, I. Walha, E. Dhahri, E.K. Hlil, J. Alloys Compd. 579, 564 (2013)CrossRefGoogle Scholar
  7. 7.
    M. Bejar, R. Dhahri, F. ElHalouani, E. Dhahri, J. Alloys Compd. 414, 31 (2006)CrossRefGoogle Scholar
  8. 8.
    A. Dhahri, M. Jemmali, E. Dhahri, M.A. Valente, J. Alloys Compd. 638, 221 (2015)CrossRefGoogle Scholar
  9. 9.
    M. Khlifi, M. Bejar, E. Dhahri, P. Lachkar, E.K. Hlil, J. Appl. Phys. 111, 103909 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    R. Skini, A. Omri, M. Khlifi, E. Dhahri, E.K. Hlil, J. Magn. Magn. Mater. 364, 5 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    Y. Tokura, Rep. Prog. Phys. 69, 797 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    N. Dhahri, A. Dhahri, K. Cherif, J. Dhahri, K. Taibi, E. Dhahri, J. Alloys Compd. 496, 69 (2010)CrossRefGoogle Scholar
  13. 13.
    A. Tozri, E. Dhahri, E.K. Hlil, Mater. Lett. 64, 2138 (2010)CrossRefGoogle Scholar
  14. 14.
    M. Khlifi, A. Tozri, M. Bejar, E. Dhahri, E.K. Hlil, J. Magn. Magn. Mater. 324, 2142 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    M. Nasri, J. Khelifi, M. Triki, E. Dhahri, E.K. Hlil, J. Alloys Compd. 678, 427 (2016)CrossRefGoogle Scholar
  16. 16.
    H. Baaziz, A. Tozri, E. Dhahri, E.K. Hlil, Chem. Phys. Lett. 625, 168 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    A. Tozri, J. Khelifi, E. Dhahri, E.K. Hlil, Mater. Chem. Phys. 149, 728 (2015)CrossRefGoogle Scholar
  18. 18.
    R. Tlili, A. Omri, M. Bekri, M. Bejar, E. Dhahri, E.K. Hlil, J. Magn. Magn. Mater. 399, 143 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    K.S. Shankar, A.K. Raychaudhuiri, J. Mater. Res. 21, 27 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    S.B. Tian, M.H. Phan, S.C. Yu, Hur H. Phys B 327, 221 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    C.S. Hong, W.S. Kim, N.H. Hur, Solid State Commun. 121, 657 (2002)ADSCrossRefGoogle Scholar
  22. 22.
    Y.L. Chang, C.K. Ong, J. Phys. Condens. Matter. 16, 3711 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    W.B. Wu, K.H. Wong, X.G. Li, C.L. Choy, J. Appl. Phys. 87, 3006 (2000)ADSCrossRefGoogle Scholar
  24. 24.
    M. Pekala, K. Pekala, V. Drozd, K. Staszkiewicz, J.F. Fagnard, P. Vanderbemden, J. Appl. Phys. 112, 023906 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    M.A. Hamad, Phase Transit. 85, 106 (2012)CrossRefGoogle Scholar
  26. 26.
    R. Tlili, R. Hammouda, M. Bejar, E. Dhahri, J. Magn. Magn. Mater. 386, 81 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    Ah Dhahri, M. Jemmali, E. Dhahri, M.A. Valente, J. Alloys Compd. 638, 221 (2015)CrossRefGoogle Scholar
  28. 28.
    E. Sagar, N.P. Kumar, J. Zhu, Y. Hu, P.V. Reddy, J. Supercond. Nov. Magn. 27, 2289 (2014)CrossRefGoogle Scholar
  29. 29.
    N. Pavan Kumar, G. Lalitha, E. Sagar, P.V. Reddy, Phys. B 457, 275 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    R. Skini, M. Khlifi, M. Triki, E. Dhahri, E.K. Hlil, J. Chem. Phys. 452, 67 (2015)Google Scholar
  31. 31.
    M. Jeddi, H. Gharsallah, M. Bekri, E. Dhahri, E.K. Hlil, RSC Adv. 8, 28649 (2018)CrossRefGoogle Scholar
  32. 32.
    M.H. Phan, S.B. Tian, S.C. Yu, A.N. Ulyanov, J. Magn. Magn. Mater. 256, 306 (2003)ADSCrossRefGoogle Scholar
  33. 33.
    V.M. Andrade, R.C. Vivas, S.S. Pedro, J.C.G. Tedesco, A.L. Rossi, A.A. Coelho, M.S. Reis, Acta Mater. 102, 49 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • M. Jeddi
    • 1
    Email author
  • H. Gharsallah
    • 1
    • 2
  • M. Bekri
    • 3
  • E. Dhahri
    • 1
  • E. K. Hlil
    • 4
  1. 1.Laboratoire de Physique Appliquée, Faculté des SciencesUniversité de SfaxSfaxTunisie
  2. 2.Institut Préparatoire aux Études d’Ingénieur de SfaxUniversité de SfaxSfaxTunisie
  3. 3.Physics Department, Rabigh College of Science and ArtKing Abdulaziz UniversityRabighSaudi Arabia
  4. 4.Institut NéelCNRS Université J. FourierGrenobleFrance

Personalised recommendations