Advertisement

Characterization of High Aspect-Ratio TiAu TES X-ray Microcalorimeter Array Under AC Bias

  • E. TaralliEmail author
  • L. Gottardi
  • K. Nagayoshi
  • M. Ridder
  • S. Visser
  • P. Khosropanah
  • H. Akamatsu
  • J. van der Kuur
  • M. Bruijn
  • J. R. Gao
Article
  • 21 Downloads

Abstract

We are developing X-ray microcalorimeters as a backup option for the baseline detectors in the X-IFU instrument on board the ATHENA space mission led by ESA and to be launched in the early 2030s. 5 \(\times \) 5 mixed arrays with TiAu transition-edge sensor (TES), which have different high aspect ratios and thus high resistances, have been designed and fabricated to meet the energy resolution requirement of the X-IFU instrument. Such arrays can also be used to optimize the performance of the frequency domain multiplexing (FDM) readout and lead to the final steps for the fabrication of a large detector array. In this work, we present the experimental results from tens of the devices with an aspect ratio (length-to-width) ranging from 1-to-1 up to 6-to-1, measured in a single-pixel mode with a FDM readout system developed at SRON/VTT. We observed a nominal energy resolution of about 2.5 eV at 5.9 keV at bias frequencies ranging from 1 to 5 MHz. These detectors are proving to be the best TES microcalorimeters ever reported in Europe, intending to meet the requirements of the X-IFU instrument, but also those of other future challenging X-ray space missions, fundamental physics experiments, plasma characterization and material analysis.

Keywords

Transition-edge sensor Energy resolution X-IFU AC bias 

Notes

Acknowledgements

This work is partly funded by European Space Agency (ESA) and coordinated with other European efforts under ESA CTP contract ITT AO/1-7947/14/NL/BW. It has also received funding from the European Union’s Horizon 2020 Programme under the AHEAD (Activities for the High-Energy Astrophysics Domain) project with Grant Agreement Number 654215.

References

  1. 1.
    F. Pajot, D. Barret, T. Lam-Trong, J.-W. den Herder et al., J. Low Temp. Phys. 193, 901 (2018)ADSCrossRefGoogle Scholar
  2. 2.
    European Space Agency (ESA), ATHENA Mission Summary, http://sci.esa.int/athena/59896-missionsummary
  3. 3.
    S.J. Smith, J.S. Adams, S.R. Bandler et al., Proc. SPIE 99055S, (2016).  https://doi.org/10.1117/12.2231749
  4. 4.
    H. Akamatsu, L. Gottardi, J. van der Kuur, C.P. de Vries, M.P. Bruijn, J.A. Chervenak, M. Kiviranta, A.J. van den Linden, B.D. Jackson, A. Miniussi, K. Sakai, S.J. Smith, N.A. Wakeham, Proc. SPIE 106991N (2018).  https://doi.org/10.1117/12.2313284
  5. 5.
    K. Sakai, J.S. Adams, S.R. Bandler, J.A. Chervenak, A.M. Datesman, M.E. Eckart, F.M. Finkbeiner, R.L. Kelley, C.A. Kilbourne, A.R. Miniussi, F.S. Porter, J.S. Sadleir, S.J. Smith, N.A. Wakeham, E.J. Wassell, W. Yoon, H. Akamatsu, M.P. Bruijn, L. Gottardi, B.D. Jackson, J. van der Kuur, B.J. van Leeuwen, A.J. van der Linden, H.J. van Weers, M. Kiviranta, J. Low Temp. Phys. 193, 356 (2018)ADSCrossRefGoogle Scholar
  6. 6.
    N.A. Wakeham, J.S. Adams, S.R. Bandler, J.A. Chervenak, A.M. Datesman, M.E. Eckart, F.M. Finkbeiner, R.L. Kelley, C.A. Kilbourne, A.R. Miniussi, F.S. Porter, J.E. Sadleir, K. Sakai, S.J. Smith, E.J. Wassell, W. Yoon, J. Low Temp. Phys. 193, 231 (2018)ADSCrossRefGoogle Scholar
  7. 7.
    E. Taralli, P. Khosropanah, L. Gottardi, K. Nagayoshi, M.L. Ridder, M.P. Bruijn, J.R. Gao, AIP Adv. 9, 045324 (2019).  https://doi.org/10.1063/1.5089739 ADSCrossRefGoogle Scholar
  8. 8.
    L. Gottardi, S.J. Smith, A. Kozorezov, H. Akamatsu, J. van der Kuur, S.R. Bandler, M.P. Bruijn, J.A. Chervenak, J.R. Gao, R.H. den Hartog, B.D. Jackson, P. Khosropanah, A. Miniussi, K. Nagayoshi, M. Ridder, J. Sadleir, K. Sakai, N. Wakeham, J. Low Temp. Phys. 193, 209 (2018)ADSCrossRefGoogle Scholar
  9. 9.
    P. Khosropanah, E. Taralli, L. Gottardi, C.P. de Vries, K. Nagayoshi, M.L. Ridder, H. Akamatsu, M.P. Bruijn, J.-R. Gao, Proc. SPIE 106991M (2018).  https://doi.org/10.1117/12.2313439
  10. 10.
    D. Yan, R. Divan, L.M. Gades, P. Kenesei, T.J. Madden, A. Miceli, J.-S. Park, U.M. Patel, O. Quaranta, H. Sharma, D.A. Bennett, W.B. Doriese, J.W. Fowler, J.D. Gard, J.P. Hays-Wehle, K.M. Morgan, D.R. Schmidt, D.S. Swetz, Joel N. Ullom, Appl. Phys. Lett. 111, 192602 (2017).  https://doi.org/10.1063/1.5001198 ADSCrossRefGoogle Scholar
  11. 11.
    K. Nagayoshi, M.L. Ridder, M.P. Bruijn, L. Gottardi, E. Taralli, P. Khosropanah, S. Visser, J.R. Gao, J. Low Temp. Phys. (This Special Issue) (2019)Google Scholar
  12. 12.
    H. Akamatsu, L. Gottardi, J. van der Kuur, C.P. de Vries, K. Ravensberg, J.S. Adams, S.R. Bandler, M.P. Bruijn, J.A. Chervenak, C.A. Kilbourne, M. Kiviranta, A.J. van der Linden, B.D. Jackson, S.J. Smith, Proc. SPIE 99055S (2016).  https://doi.org/10.1117/12.2232805

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.SRON Netherlands Institute for Space ResearchUtrechtThe Netherlands
  2. 2.Faculty of Applied ScienceDelft University of TechnologyDelftThe Netherlands

Personalised recommendations