Advertisement

Irreversibility Line and Enhancement of Magnetic Flux Pinning in Sm-Doped Y123 Superconductor with CuO Nanoparticles

  • Raheleh HajilouEmail author
  • Hassan Sedghi Gamchi
Article
  • 8 Downloads

Abstract

Y1−xSmxBa2Cu3O7−∂ (x = 0.00, 0.01, 0.02 and 0.05 wt.%) samples with Nano-CuO have been prepared by the solid-state reaction method. The effects of Sm doped in the YBCO system with Nano-CuO (40 nm) on structural, critical temperature (Tc), irreversibility line (IL), critical current density, JC and flux line pinning force are investigated. We also measured magnetization as a function of temperature (M–T) and magnetic loops (M–H) at constant temperatures of 10, 20, 30, 40, 50 and 60 K up to 10 kG. XRD measurements show that all the sintered samples have orthorhombic structure. The sample with x = 0.01 wt.% Sm substituted for Y on YBCO superconductor improves the critical temperature more than that of the pure Y123 and the other samples. For this sample, the zero field-cooled and field-cooled magnetization as a function of temperature measurements reveals the shift of IL to higher temperatures and magnetic fields. The critical current density and flux pinning force calculated using the Bean’s critical state model indicate an enhancement of Jc and Fp for the Sm-doped x = 0.01 sample compared with the sample with x = 0.02 and even the pure Y123.

Keywords

High-Tc superconductors Scanning electron microscopy X-ray scattering Irreversibility line Critical current density 

Notes

References

  1. 1.
    J.G. Bednorz, K.A. Müller, Possible high T c superconductivity in the Ba–La–Cu–O system. Z. Phys. B 64, 189 (1986).  https://doi.org/10.1007/bf01303701 ADSCrossRefGoogle Scholar
  2. 2.
    Y. Xu, M. Suenaga, Y. Gao, J.E. Crow, N.D. Spencer, Irreversibility temperatures in c-axis-oriented powders of YBa2Cu3O7, Bi2Sr2CaCu2O8, and Bi2Sr2Ca2Cu3O10. Phys. Rev. B 42, 8756 (1990).  https://doi.org/10.1103/PhysRevB.42.8756 ADSCrossRefGoogle Scholar
  3. 3.
    J. Vanacken, E. Osquiguil, Y.B. Ruynseraede, Irreversibility line and critical currents in oxygen deficient YBa2Cu3Ox ceramics. Physica C 18, 163 (1991).  https://doi.org/10.1016/0921-4534(91)90780-3 ADSCrossRefGoogle Scholar
  4. 4.
    Y. Yeshurun, A.P. Malozeemoff, Giant Flux Creep and Irreversibility in a Y–Ba–Cu–O Crystal: an alternative to the superconducting-glass model. Phys. Rev. Lett. 60, 2202 (1988).  https://doi.org/10.1103/PhysRevLett.60.2202 ADSCrossRefGoogle Scholar
  5. 5.
    L. Civale, T.K. Worthington, A. Gupa, Thickness dependence of the irreversibility line in YBa2Cu3O7−x thin films. Phys. Rev. B 43, 5425 (1991).  https://doi.org/10.1103/PhysRevB.43.5425 ADSCrossRefGoogle Scholar
  6. 6.
    W. Kritscha, F.M. Sqverzopf, H.W. Weber, G.W. Grabtree, Y.C. Chang, P.Z. Jiang, Critical currents in superconductors for practical applications. Europhys. Lett. 12, 17999 (1990).  https://doi.org/10.1142/3642 CrossRefGoogle Scholar
  7. 7.
    H. Zaleski, F.S. Razavi, Irreversibility-line study in the polycrystalline Bi2 Sr2 Ca Cu2 O8 superconductor. Phys. Rev. B 43, 1423 (1991).  https://doi.org/10.1103/PhysRevB.43.11423 CrossRefGoogle Scholar
  8. 8.
    J.S. Munoz, M. Pont, T. Puig, Z.Z. Sheng, Y. Xin, D.X. Gun, D.O. Pederson, Effect of a bias field (up to 1 T) on the a. c. susceptibility of Cr0.3Tl1 Ba2Ca2Cu3Ox. Cryogenics 32, 1042 (1992).  https://doi.org/10.1016/0011-2275(92)90024-5 ADSCrossRefGoogle Scholar
  9. 9.
    M. Pont, T. Puig, J.S. Munoz, Z.Z. Sheng, Y. Xin, D.X. Gun, D.O. Pederson, Effect of Cr and V substitution on the properties of bulk Tl-based superconductors. Cryogenics 33, 91 (1993).  https://doi.org/10.1016/0011-2275(93)90083-Z ADSCrossRefGoogle Scholar
  10. 10.
    M. Suenaga, A.K. Ghosh, Y. Xu, D.O. Welsh, Irreversibility temperatures of Nb3Sn and Nb-Ti. Phys. Rev. Lett. 66, 1777 (1991).  https://doi.org/10.1103/PhysRevLett.66.1777 ADSCrossRefGoogle Scholar
  11. 11.
    A.K. Grover, R. Kumar, S.K. Malik, P. Chaddah, V. Sankaranara Yahan, C.K. Subramanian, Quasi-irreversibility temperature in a type-I superconductor. Phys. Rev. B 43, 6151 (1991).  https://doi.org/10.1103/PhysRevB.43.6151 ADSCrossRefGoogle Scholar
  12. 12.
    J.F. Carolan, W.N. Hardy, R. Krahn, J.H. Brewer, R.C. Thompon, A.C.D. Chaklader, The superconducting glass transition in YBa2Cu3O7−σ. Solid State Commun. 64, 717–719 (1987).  https://doi.org/10.1016/0038-1098(87)90686-7 ADSCrossRefGoogle Scholar
  13. 13.
    R.H. Koch, V. Foghieti, W.J. Gallagher, G. Koren, A. Gupla, M.P.A. Fisher, Experimental evidence for vortex-glass superconductivity in Y-Ba–Cu–O. Phys. Rev. Lett. 63, 1511 (1989).  https://doi.org/10.1103/PhysRevLett.63.1511 ADSCrossRefGoogle Scholar
  14. 14.
    Y. Xu, M. Suenaga, Irreversibility temperatures in superconducting oxides: the flux-line-lattice melting, the glass-liquid transition, or the depinning temperatures. Phys. Rev. B 43, 5516 (1991).  https://doi.org/10.1103/PhysRevB.43.5516 ADSCrossRefGoogle Scholar
  15. 15.
    D.K. Finnemore, R.N. Shelton, J.R. Clem, R.W. McCallum, H.C. Ku, R.E. McCarly, S.C. Chen, P.K. Lavins, V. Kogan, Magnetization of superconducting lanthanum copper oxides. Phys. Rev. B 35, 5319 (1987).  https://doi.org/10.1103/PhysRevB.35.5319 ADSCrossRefGoogle Scholar
  16. 16.
    A.P. Malozemoff, T.K. Wortinglon, Y. Yeshurun, F. Holtzberg, Frequency dependence of the ac susceptibility in a Y–Ba–Cu–O crystal: a reinterpretation of Hc2. Phys. Rev. B 37, 7203 (1988).  https://doi.org/10.1103/PhysRevB.38.7203 ADSCrossRefGoogle Scholar
  17. 17.
    C.H. Heinzel, C.H. Neumann, P. Ziemann, Anisotropy of the irreversible magnetic behaviour of YBaCuO and TlBaCaCuO single crystals: a comparative a.c.-susceptibility study. Euro Phys. Lett. 13, 531 (1990).  https://doi.org/10.1209/0295-5075/13/6/010 ADSCrossRefGoogle Scholar
  18. 18.
    V. Skumryev, M.R. Koblischka, H. Kronmfüller, Sample size dependence of the AC-susceptibility of sintered YBa2Cu3O7−σ superconductors. Physica C 184, 332 (1991).  https://doi.org/10.1016/0921-4534(91)90399-J ADSCrossRefGoogle Scholar
  19. 19.
    S. Ramarkrishnan, R. Kumar, P.L. Pavlose, A.K. Grover, P. Chaddah, Comparison of various methods to determine experimentally the irreversibility line in superconductors. Phys. Rev. B 44, 9514 (1991).  https://doi.org/10.1103/PhysRevB.44.9514 ADSCrossRefGoogle Scholar
  20. 20.
    A.F. Khoder, M. Couach, J.L. Jorda, Flux density in the mixed state in the high-T c superconductors and the predictions of Abrikosov theory. Phys. Rev. B 42, 8714 (1990).  https://doi.org/10.1103/PhysRevB.42.8714 ADSCrossRefGoogle Scholar
  21. 21.
    E.R. Yacoby, A. Shaulov, Y. Yeshurum, M. Konczykowski, F. Rulleir Albenque, Irreversibility line in YBa2Cu3O7 samples A comparison between experimental techniques and effect of electron irradiation. Physica C 199, 15 (1992).  https://doi.org/10.1016/0921-4534(92)90534-J ADSCrossRefGoogle Scholar
  22. 22.
    J. Gilchrist, M. Konczykowski, AC screening measurement for the characterization of oxide superconductors, I. Application to ceramics. Physica C 168, 123 (1990).  https://doi.org/10.1016/0921-4534(90)90114-T ADSCrossRefGoogle Scholar
  23. 23.
    A.F. Hebard, P.L. Gammel, C.E. Rice, A.F.J. Levi, Pair-breaking description of the vortex-depinssissg critical field in YBa2Cu3O7 thin. Phys. Rev. B 40, 5243 (1989).  https://doi.org/10.1103/PhysRevB.40.5243 ADSCrossRefGoogle Scholar
  24. 24.
    T. Wolf, I. Apfelstedt, W. Goldcker, H. Küpfer, R. Flükiger, Preparation and characterization of isotropic and textured YBa2Cu3O7−x with high density and low residual resistivity. Physica C 351, 153–155 (1988).  https://doi.org/10.1016/0921-4534(88)90628-4 CrossRefGoogle Scholar
  25. 25.
    R.M. Hazen, L.W. Finger, R.J. Angel, C.T. Perwitt, N.L. Ross, H.K. Mao, C.G. Hadidiacos, P.H. Hor, R.L. Meng, C.W. Chu, Crystallographic description of phases in the Y–Ba–Cu–O superconductor. Phys. Rev. 335, 7238 (1987).  https://doi.org/10.1103/PhysRevB.35.7238 CrossRefGoogle Scholar
  26. 26.
    M.B. Turkoz, S. Nezir, C. Terzioglu, A. Varilci, G. Yildirim, Investigation of Lu effect on YBa2Cu3O7−σ superconducting, compounds. J. Mater. Sci.: Mater. Electron. 24, 896–905 (2013).  https://doi.org/10.1007/s10854-012-0846-y CrossRefGoogle Scholar
  27. 27.
    B. Abeles, H.L. Pinch, J.I. Gittleman, Percolation conductivity in W-a1203 granular metal films. Phys. Rev. Lett. 35, 247 (1975).  https://doi.org/10.1103/PhysRevLett.35.247 ADSCrossRefGoogle Scholar
  28. 28.
    S.P.K. Naik, P.M.S. Raju, V. Seshubai, Role of Sm and Nb on the preform optimized infiltration growth processed YBCO superconductors. Mater. Chem. Phys. 182, 503–507 (2016).  https://doi.org/10.1016/j.matchemphys.2016.07.064 CrossRefGoogle Scholar
  29. 29.
    K.A. Müller, M. Takashige, J.G. Bednorz, Flux trapping and superconductive glass state in La2CuO4−y: Ba. Phys. Rev. Lett. 58, 1143 (1987).  https://doi.org/10.1103/PhysRevLett.58.1143 ADSCrossRefGoogle Scholar
  30. 30.
    M. Cai, M.H. Fang, X.J. Zhang, Z.K. Jiao, Q.R. Zhang, X.S. Rong, B.R. Zhao, Investigations on flux creep and J c (T,B) behavior in Y1−xEuxBa2Cu3O7−σ. Phys. State. Sol. (a) 147, 221 (1995).  https://doi.org/10.1002/pssa.2211470123 ADSCrossRefGoogle Scholar
  31. 31.
    Z.D. Yakinci, D.M. Gokhfed, E. Altin, F. Kurt, S. Altin, D. Demirel, M.A. Aksan, M.E. Yakinci, Jc enhancement and flux pinning of Se substituted YBCO compound. J. Mater. Sci. 24, 4790 (2013).  https://doi.org/10.1007/s10854-013-1476-8 CrossRefGoogle Scholar
  32. 32.
    P.L. Gammel, L.F. Schneemeyer, J.V. Waszczak, D.J. Bishop, Evidence from mechanical measurements for flux-lattice melting in single-crystal YBa2Cu3O7 and Bi2.2Sr2Ca0.8Cu2O8. Phys. Rev. Lett. 61, 1661 (1988).  https://doi.org/10.1103/PhysRevLett.61.1666 ADSCrossRefGoogle Scholar
  33. 33.
    D.S. Fisher, M.P.A. Fisher, D.A. Huse, Thermal fluctuations, quenched disorder, phase transitions, and transport in type-II superconductors. Phys. Rev. B 43, 130 (1991).  https://doi.org/10.1103/PhysRevB.43.130 ADSCrossRefGoogle Scholar
  34. 34.
    P. Esquinazi, A. Gupta, H.F. Braun, The depinning line of a Y (Gd) Ba2Cu3Ox single crystal. Phys. B 165, 1151 (1990).  https://doi.org/10.1016/S0921-4526(09)80161-0 ADSCrossRefGoogle Scholar
  35. 35.
    J.R.L. de Almeida, D.J. Thouless, Stability of the Sherrington-Kirkpatrick solution of a spin glass model. J. Phys. A 11, 983 (1978).  https://doi.org/10.1088/0305-4470/11/5/028 ADSCrossRefGoogle Scholar
  36. 36.
    M. Tinkham, resistive transition of high-temperature superconductors. Phys. Rev. Lett. 61, 1658 (1988).  https://doi.org/10.1103/PhysRevLett.61.1658 ADSCrossRefGoogle Scholar
  37. 37.
    A. Öztürka, İ. Düzgünb, S. Çlebi, The effect of partial Lu doping on magnetic behaviour of YBCO (123) superconductors. J. Alloys Compd. 495, 104–107 (2010).  https://doi.org/10.1016/j.jallcom.2010.01.095 CrossRefGoogle Scholar
  38. 38.
    C.P. Bean, Magnetization of hard superconductors. Phys. Rev. Lett. 8, 250–253 (1962).  https://doi.org/10.1103/PhysRevLett.8.250 ADSCrossRefzbMATHGoogle Scholar
  39. 39.
    A. Schmehl, B. Goetz, R.R. Schuls, C.W. Schneider, H. Bielefeldt, H. Hilgenkamp, J. Mannhart, Doping-induced enhancement of the critical currents of grain boundaries in YBa2Cu3O7−δ. Euophys. Lett. 47, 110–115 (1999).  https://doi.org/10.1209/epl/i1999-00359-2 ADSCrossRefGoogle Scholar
  40. 40.
    G. Hammerl, A. Schmehl, R.R. Schulz, B. Goetz, H. Bielefeldt, C.W. Schneider, H. Hilgenkamp, J. Mannhart, J. Mannhart, Enhanced supercurrent density in polycrystalline YBa2Cu3O7−σ at 77 K from calcium doping of grain boundaries. Nature 407, 162–164 (2000).  https://doi.org/10.1038/35025014 ADSCrossRefGoogle Scholar
  41. 41.
    B.A. Malik, M.A. Malik, K. Asokan, Enhancement of the critical current density in YBCO/Ag composites. Chin. J. Phys. 55, 170–175 (2017).  https://doi.org/10.1016/j.cjph.2016.10.015 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics, Superconductivity Research Center, Faculty of ScienceUrmia UniversityUrmiaIran

Personalised recommendations