Irreversibility Line and Enhancement of Magnetic Flux Pinning in Sm-Doped Y123 Superconductor with CuO Nanoparticles

  • Raheleh HajilouEmail author
  • Hassan Sedghi Gamchi


Y1−xSmxBa2Cu3O7−∂ (x = 0.00, 0.01, 0.02 and 0.05 wt.%) samples with Nano-CuO have been prepared by the solid-state reaction method. The effects of Sm doped in the YBCO system with Nano-CuO (40 nm) on structural, critical temperature (Tc), irreversibility line (IL), critical current density, JC and flux line pinning force are investigated. We also measured magnetization as a function of temperature (M–T) and magnetic loops (M–H) at constant temperatures of 10, 20, 30, 40, 50 and 60 K up to 10 kG. XRD measurements show that all the sintered samples have orthorhombic structure. The sample with x = 0.01 wt.% Sm substituted for Y on YBCO superconductor improves the critical temperature more than that of the pure Y123 and the other samples. For this sample, the zero field-cooled and field-cooled magnetization as a function of temperature measurements reveals the shift of IL to higher temperatures and magnetic fields. The critical current density and flux pinning force calculated using the Bean’s critical state model indicate an enhancement of Jc and Fp for the Sm-doped x = 0.01 sample compared with the sample with x = 0.02 and even the pure Y123.


High-Tc superconductors Scanning electron microscopy X-ray scattering Irreversibility line Critical current density 



  1. 1.
    J.G. Bednorz, K.A. Müller, Possible high T c superconductivity in the Ba–La–Cu–O system. Z. Phys. B 64, 189 (1986). ADSCrossRefGoogle Scholar
  2. 2.
    Y. Xu, M. Suenaga, Y. Gao, J.E. Crow, N.D. Spencer, Irreversibility temperatures in c-axis-oriented powders of YBa2Cu3O7, Bi2Sr2CaCu2O8, and Bi2Sr2Ca2Cu3O10. Phys. Rev. B 42, 8756 (1990). ADSCrossRefGoogle Scholar
  3. 3.
    J. Vanacken, E. Osquiguil, Y.B. Ruynseraede, Irreversibility line and critical currents in oxygen deficient YBa2Cu3Ox ceramics. Physica C 18, 163 (1991). ADSCrossRefGoogle Scholar
  4. 4.
    Y. Yeshurun, A.P. Malozeemoff, Giant Flux Creep and Irreversibility in a Y–Ba–Cu–O Crystal: an alternative to the superconducting-glass model. Phys. Rev. Lett. 60, 2202 (1988). ADSCrossRefGoogle Scholar
  5. 5.
    L. Civale, T.K. Worthington, A. Gupa, Thickness dependence of the irreversibility line in YBa2Cu3O7−x thin films. Phys. Rev. B 43, 5425 (1991). ADSCrossRefGoogle Scholar
  6. 6.
    W. Kritscha, F.M. Sqverzopf, H.W. Weber, G.W. Grabtree, Y.C. Chang, P.Z. Jiang, Critical currents in superconductors for practical applications. Europhys. Lett. 12, 17999 (1990). CrossRefGoogle Scholar
  7. 7.
    H. Zaleski, F.S. Razavi, Irreversibility-line study in the polycrystalline Bi2 Sr2 Ca Cu2 O8 superconductor. Phys. Rev. B 43, 1423 (1991). CrossRefGoogle Scholar
  8. 8.
    J.S. Munoz, M. Pont, T. Puig, Z.Z. Sheng, Y. Xin, D.X. Gun, D.O. Pederson, Effect of a bias field (up to 1 T) on the a. c. susceptibility of Cr0.3Tl1 Ba2Ca2Cu3Ox. Cryogenics 32, 1042 (1992). ADSCrossRefGoogle Scholar
  9. 9.
    M. Pont, T. Puig, J.S. Munoz, Z.Z. Sheng, Y. Xin, D.X. Gun, D.O. Pederson, Effect of Cr and V substitution on the properties of bulk Tl-based superconductors. Cryogenics 33, 91 (1993). ADSCrossRefGoogle Scholar
  10. 10.
    M. Suenaga, A.K. Ghosh, Y. Xu, D.O. Welsh, Irreversibility temperatures of Nb3Sn and Nb-Ti. Phys. Rev. Lett. 66, 1777 (1991). ADSCrossRefGoogle Scholar
  11. 11.
    A.K. Grover, R. Kumar, S.K. Malik, P. Chaddah, V. Sankaranara Yahan, C.K. Subramanian, Quasi-irreversibility temperature in a type-I superconductor. Phys. Rev. B 43, 6151 (1991). ADSCrossRefGoogle Scholar
  12. 12.
    J.F. Carolan, W.N. Hardy, R. Krahn, J.H. Brewer, R.C. Thompon, A.C.D. Chaklader, The superconducting glass transition in YBa2Cu3O7−σ. Solid State Commun. 64, 717–719 (1987). ADSCrossRefGoogle Scholar
  13. 13.
    R.H. Koch, V. Foghieti, W.J. Gallagher, G. Koren, A. Gupla, M.P.A. Fisher, Experimental evidence for vortex-glass superconductivity in Y-Ba–Cu–O. Phys. Rev. Lett. 63, 1511 (1989). ADSCrossRefGoogle Scholar
  14. 14.
    Y. Xu, M. Suenaga, Irreversibility temperatures in superconducting oxides: the flux-line-lattice melting, the glass-liquid transition, or the depinning temperatures. Phys. Rev. B 43, 5516 (1991). ADSCrossRefGoogle Scholar
  15. 15.
    D.K. Finnemore, R.N. Shelton, J.R. Clem, R.W. McCallum, H.C. Ku, R.E. McCarly, S.C. Chen, P.K. Lavins, V. Kogan, Magnetization of superconducting lanthanum copper oxides. Phys. Rev. B 35, 5319 (1987). ADSCrossRefGoogle Scholar
  16. 16.
    A.P. Malozemoff, T.K. Wortinglon, Y. Yeshurun, F. Holtzberg, Frequency dependence of the ac susceptibility in a Y–Ba–Cu–O crystal: a reinterpretation of Hc2. Phys. Rev. B 37, 7203 (1988). ADSCrossRefGoogle Scholar
  17. 17.
    C.H. Heinzel, C.H. Neumann, P. Ziemann, Anisotropy of the irreversible magnetic behaviour of YBaCuO and TlBaCaCuO single crystals: a comparative a.c.-susceptibility study. Euro Phys. Lett. 13, 531 (1990). ADSCrossRefGoogle Scholar
  18. 18.
    V. Skumryev, M.R. Koblischka, H. Kronmfüller, Sample size dependence of the AC-susceptibility of sintered YBa2Cu3O7−σ superconductors. Physica C 184, 332 (1991). ADSCrossRefGoogle Scholar
  19. 19.
    S. Ramarkrishnan, R. Kumar, P.L. Pavlose, A.K. Grover, P. Chaddah, Comparison of various methods to determine experimentally the irreversibility line in superconductors. Phys. Rev. B 44, 9514 (1991). ADSCrossRefGoogle Scholar
  20. 20.
    A.F. Khoder, M. Couach, J.L. Jorda, Flux density in the mixed state in the high-T c superconductors and the predictions of Abrikosov theory. Phys. Rev. B 42, 8714 (1990). ADSCrossRefGoogle Scholar
  21. 21.
    E.R. Yacoby, A. Shaulov, Y. Yeshurum, M. Konczykowski, F. Rulleir Albenque, Irreversibility line in YBa2Cu3O7 samples A comparison between experimental techniques and effect of electron irradiation. Physica C 199, 15 (1992). ADSCrossRefGoogle Scholar
  22. 22.
    J. Gilchrist, M. Konczykowski, AC screening measurement for the characterization of oxide superconductors, I. Application to ceramics. Physica C 168, 123 (1990). ADSCrossRefGoogle Scholar
  23. 23.
    A.F. Hebard, P.L. Gammel, C.E. Rice, A.F.J. Levi, Pair-breaking description of the vortex-depinssissg critical field in YBa2Cu3O7 thin. Phys. Rev. B 40, 5243 (1989). ADSCrossRefGoogle Scholar
  24. 24.
    T. Wolf, I. Apfelstedt, W. Goldcker, H. Küpfer, R. Flükiger, Preparation and characterization of isotropic and textured YBa2Cu3O7−x with high density and low residual resistivity. Physica C 351, 153–155 (1988). CrossRefGoogle Scholar
  25. 25.
    R.M. Hazen, L.W. Finger, R.J. Angel, C.T. Perwitt, N.L. Ross, H.K. Mao, C.G. Hadidiacos, P.H. Hor, R.L. Meng, C.W. Chu, Crystallographic description of phases in the Y–Ba–Cu–O superconductor. Phys. Rev. 335, 7238 (1987). CrossRefGoogle Scholar
  26. 26.
    M.B. Turkoz, S. Nezir, C. Terzioglu, A. Varilci, G. Yildirim, Investigation of Lu effect on YBa2Cu3O7−σ superconducting, compounds. J. Mater. Sci.: Mater. Electron. 24, 896–905 (2013). CrossRefGoogle Scholar
  27. 27.
    B. Abeles, H.L. Pinch, J.I. Gittleman, Percolation conductivity in W-a1203 granular metal films. Phys. Rev. Lett. 35, 247 (1975). ADSCrossRefGoogle Scholar
  28. 28.
    S.P.K. Naik, P.M.S. Raju, V. Seshubai, Role of Sm and Nb on the preform optimized infiltration growth processed YBCO superconductors. Mater. Chem. Phys. 182, 503–507 (2016). CrossRefGoogle Scholar
  29. 29.
    K.A. Müller, M. Takashige, J.G. Bednorz, Flux trapping and superconductive glass state in La2CuO4−y: Ba. Phys. Rev. Lett. 58, 1143 (1987). ADSCrossRefGoogle Scholar
  30. 30.
    M. Cai, M.H. Fang, X.J. Zhang, Z.K. Jiao, Q.R. Zhang, X.S. Rong, B.R. Zhao, Investigations on flux creep and J c (T,B) behavior in Y1−xEuxBa2Cu3O7−σ. Phys. State. Sol. (a) 147, 221 (1995). ADSCrossRefGoogle Scholar
  31. 31.
    Z.D. Yakinci, D.M. Gokhfed, E. Altin, F. Kurt, S. Altin, D. Demirel, M.A. Aksan, M.E. Yakinci, Jc enhancement and flux pinning of Se substituted YBCO compound. J. Mater. Sci. 24, 4790 (2013). CrossRefGoogle Scholar
  32. 32.
    P.L. Gammel, L.F. Schneemeyer, J.V. Waszczak, D.J. Bishop, Evidence from mechanical measurements for flux-lattice melting in single-crystal YBa2Cu3O7 and Bi2.2Sr2Ca0.8Cu2O8. Phys. Rev. Lett. 61, 1661 (1988). ADSCrossRefGoogle Scholar
  33. 33.
    D.S. Fisher, M.P.A. Fisher, D.A. Huse, Thermal fluctuations, quenched disorder, phase transitions, and transport in type-II superconductors. Phys. Rev. B 43, 130 (1991). ADSCrossRefGoogle Scholar
  34. 34.
    P. Esquinazi, A. Gupta, H.F. Braun, The depinning line of a Y (Gd) Ba2Cu3Ox single crystal. Phys. B 165, 1151 (1990). ADSCrossRefGoogle Scholar
  35. 35.
    J.R.L. de Almeida, D.J. Thouless, Stability of the Sherrington-Kirkpatrick solution of a spin glass model. J. Phys. A 11, 983 (1978). ADSCrossRefGoogle Scholar
  36. 36.
    M. Tinkham, resistive transition of high-temperature superconductors. Phys. Rev. Lett. 61, 1658 (1988). ADSCrossRefGoogle Scholar
  37. 37.
    A. Öztürka, İ. Düzgünb, S. Çlebi, The effect of partial Lu doping on magnetic behaviour of YBCO (123) superconductors. J. Alloys Compd. 495, 104–107 (2010). CrossRefGoogle Scholar
  38. 38.
    C.P. Bean, Magnetization of hard superconductors. Phys. Rev. Lett. 8, 250–253 (1962). ADSCrossRefzbMATHGoogle Scholar
  39. 39.
    A. Schmehl, B. Goetz, R.R. Schuls, C.W. Schneider, H. Bielefeldt, H. Hilgenkamp, J. Mannhart, Doping-induced enhancement of the critical currents of grain boundaries in YBa2Cu3O7−δ. Euophys. Lett. 47, 110–115 (1999). ADSCrossRefGoogle Scholar
  40. 40.
    G. Hammerl, A. Schmehl, R.R. Schulz, B. Goetz, H. Bielefeldt, C.W. Schneider, H. Hilgenkamp, J. Mannhart, J. Mannhart, Enhanced supercurrent density in polycrystalline YBa2Cu3O7−σ at 77 K from calcium doping of grain boundaries. Nature 407, 162–164 (2000). ADSCrossRefGoogle Scholar
  41. 41.
    B.A. Malik, M.A. Malik, K. Asokan, Enhancement of the critical current density in YBCO/Ag composites. Chin. J. Phys. 55, 170–175 (2017). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics, Superconductivity Research Center, Faculty of ScienceUrmia UniversityUrmiaIran

Personalised recommendations