Advertisement

Journal of Low Temperature Physics

, Volume 197, Issue 3–4, pp 250–271 | Cite as

Superconductivity of Organic Charge-Transfer Salts

  • J. WosnitzaEmail author
Article
  • 100 Downloads

Abstract

Forty years after the discovery of the first organic superconductor, the nature of the superconducting state in these materials is still not fully understood. Here, I present an overview on the historical developments and current knowledge on this topic for the quasi-one- and quasi-two-dimensional (2D) organic charge-transfer salts. Thereby, I focus on the prototype materials based on the donor molecules tetramethyltetraselenafulvalene (TMTSF) and bisethylenedithio-tetrathiafulvalene (BEDT-TTF or ET for short). 2D organic superconductors based on the latter molecule are found to show Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) states at high magnetic fields and low temperatures. Thermodynamic and nuclear magnetic resonance data give robust evidence for the existence of this FFLO state with modulated order parameter.

Keywords

Organic superconductors Nature of superconductivity FFLO state 

Notes

Acknowledgements

This work was supported by HLD at HZDR, member of the European Magnetic Field Laboratory (EMFL), and by the Deutsche Forschungsgemeinschaft (DFG) through the ANR-DFG Grant “Fermi-NESt” (WO444/13-1).

References

  1. 1.
    F. Steglich, J. Aarts, C.D. Bredl, W. Lieke, D. Meschede, W. Franz, H. Schäfer, Phys. Rev. Lett. 43, 1892 (1979)ADSGoogle Scholar
  2. 2.
    D. Jérome, A. Mazaud, M. Ribault, K. Bechgaard, J. Phys. Lett. 41, L95 (1980)Google Scholar
  3. 3.
    K. Bechgaard, C.S. Jacobsen, K. Mortensen, J.H. Pederson, N. Thorup, Solid State Commun. 33, 1119 (1980)ADSGoogle Scholar
  4. 4.
    K. Bechgaard, K. Caneiro, M. Olsen, F.B. Rasmussen, C.S. Jacobsen, Phys. Rev. Lett. 46, 852 (1981)ADSGoogle Scholar
  5. 5.
    T. Ishiguro, K. Yamaji, G. Saito, Organic Superconductors (Springer, Berlin, 1998)Google Scholar
  6. 6.
    N. Toyota, M. Lang, J. Müller, Low-Dimensional Molecular Metals (Springer, Berlin, 2007)Google Scholar
  7. 7.
    M. Lang, J. Müller, in Superconductivity, Vol. II, ed. by K.H. Bennemann, J.B. Ketterson (Springer, Berlin, 2008), pp. 1155–1223Google Scholar
  8. 8.
    M.B. Maple, E.D. Bauer, V.S. Zapf, J. Wosnitza, in Superconductivity, Vol. I, ed. by K.H. Bennemann, J.B. Ketterson (Springer, Berlin, 2008), pp. 639–762Google Scholar
  9. 9.
    A. Lebed (ed.), The Physics of Organic Superconductors and Conductors (Springer, Berlin, 2008)Google Scholar
  10. 10.
    D. Jérome, Chem. Rev. 104, 5565 (2004)Google Scholar
  11. 11.
    I.J. Lee, S.E. Brown, W.G. Clark, M.J. Strouse, M.J. Naughton, W. Kang, P.M. Chaikin, Phys. Rev. Lett. 88, 017004 (2002)ADSGoogle Scholar
  12. 12.
    J. Shinagawa, Y. Kurosaki, F. Zhang, C. Parker, S.E. Brown, D. Jérome, J.B. Christensen, K. Bechgaard, Phys. Rev. Lett. 98, 147002 (2007)ADSGoogle Scholar
  13. 13.
    A. Ardavan, S. Brown, S. Kagoshima, K. Kanoda, K. Kuroki, H. Mori, M. Ogata, S. Uji, J. Wosnitza, J. Phys. Soc. Jpn. 81, 011004 (2012)ADSGoogle Scholar
  14. 14.
    S.S.P. Parkin, E.M. Engler, R.R. Schumaker, R. Lagier, V.Y. Lee, J.C. Scott, R.L. Greene, Phys. Rev. Lett. 50, 270 (1983)ADSGoogle Scholar
  15. 15.
    A.M. Kini, U. Geiser, H.H. Wang, K.D. Carlson, J.M. Williams, W.K. Kwok, K.D. Vandervoort, J.E. Thompsen, D.L. Stupka, D. Jung, M.H. Whangbo, Inorg. Chem. 29, 2555 (1990)Google Scholar
  16. 16.
    J.M. Williams, A.M. Kini, H.H. Wang, K.D. Carlson, U. Geiser, L.K. Montgomery, G.J. Pyrka, D.M. Watkins, J.M. Kommers, S.J. Boryschuk, A.V.S. Crouch, W.K. Kwok, J.E. Schirber, D.L. Overmyer, D. Jung, M.H. Whangbo, Inorg. Chem. 29, 3272 (1990)Google Scholar
  17. 17.
    H. Taniguchi, M. Miyashita, K. Uchiyama, K. Satoh, N. Mori, H. Okamoto, K. Miyagawa, K. Kanoda, M. Hedo, Y. Uwatoko, J. Phys. Soc. Jpn. 72, 468 (2003)ADSGoogle Scholar
  18. 18.
    J. Wosnitza, J. Low Temp. Phys. 146, 641 (2007)ADSGoogle Scholar
  19. 19.
    H. Kino, H. Fukuyama, J. Phys. Soc. Jpn. 64, 2726 (1995)ADSGoogle Scholar
  20. 20.
    H. Kino, H. Fukuyama, J. Phys. Soc. Jpn. 65, 2158 (1996)ADSGoogle Scholar
  21. 21.
    K. Kanoda, Hyperfine Interact. 104, 235 (1997)ADSGoogle Scholar
  22. 22.
    K. Kanoda, Phys. C 282–287, 299 (1997)ADSGoogle Scholar
  23. 23.
    U. Welp, S. Fleshler, W.K. Kwok, G.W. Crabtree, K.D. Carlson, H.H. Wang, U. Geiser, J.M. Williams, V.M. Hitsman, Phys. Rev. Lett. 69, 840 (1992)ADSGoogle Scholar
  24. 24.
    Y. Shimizu, K. Miyagawa, K. Kanoda, M. Maesato, G. Saito, Phys. Rev. Lett. 91, 107001 (2003)ADSGoogle Scholar
  25. 25.
    Y. Shimizu, K. Miyagawa, K. Kanoda, M. Maesato, G. Saito, Phys. Rev. B 73, 140407 (2006)ADSGoogle Scholar
  26. 26.
    R.H. McKenzie, Science 278, 820 (1997)ADSGoogle Scholar
  27. 27.
    R.H. McKenzie, Comments Cond. Mat. Phys. 18, 309 (1998)Google Scholar
  28. 28.
    J. Wosnitza, Phys. C 317–318, 98 (1999)ADSGoogle Scholar
  29. 29.
    J. Wosnitza, J. Low Temp. Phys. 117, 1701 (1999)ADSGoogle Scholar
  30. 30.
    J. Wosnitza, Crystals 2, 248 (2012)Google Scholar
  31. 31.
    J. Wosnitza, Fermi Surfaces of Low-Dimensional Organic Metals and Superconductors (Springer, Berlin, 1996)Google Scholar
  32. 32.
    D. Jérome, Science 252, 1509 (1991)ADSGoogle Scholar
  33. 33.
    J.P. Pouget, R. Moret, R. Comès, K. Bechgaard, J.M. Fabre, L. Giral, Mol. Cryst. Liq. Cryst. 79, 129 (1982)Google Scholar
  34. 34.
    T. Adachi, E. Ojima, K. Kato, H. Kobayashi, T. Miyazaki, M. Tokumoto, A. Kobayashi, J. Am. Chem. Soc. 122, 3238 (2000)Google Scholar
  35. 35.
    D. Jaccard, H. Wilhelm, D. Jérome, J. Moser, C. Carcel, J.M. Fabre, J. Phys. Condens. Matter 13, L89 (2001)ADSGoogle Scholar
  36. 36.
    H. Wilhelm, D. Jaccard, R. Duprat, C. Bourbonnais, D. Jérome, J. Moser, C. Carcel, J.M. Fabre, Eur. Phys. J. B 21, 175 (2001)ADSGoogle Scholar
  37. 37.
    P. Garoche, R. Brusetti, D. Jérome, K. Bechgaard, J. Phys. Lett. 43, L147 (1982)Google Scholar
  38. 38.
    M.Y. Choi, P.M. Chaikin, S.Z. Huang, P. Haen, E.M. Engler, R.L. Greene, Phys. Rev. B 25, 6208 (1982)ADSGoogle Scholar
  39. 39.
    N. Joo, P. Auban-Senzier, C.R. Pasquier, D. Jérome, K. Bechgaard, Europhys. Lett. 72, 645 (2005)ADSGoogle Scholar
  40. 40.
    A.A. Abrikosov, J. Low Temp. Phys. 53, 359 (1983)ADSGoogle Scholar
  41. 41.
    M. Takigawa, H. Yasuoka, G. Saito, J. Phys. Soc. Jpn. 56, 873 (1987)ADSGoogle Scholar
  42. 42.
    S. Belin, K. Behnia, Phys. Rev. Lett. 79, 2125 (1997)ADSGoogle Scholar
  43. 43.
    I.J. Lee, M.J. Naughton, G.M. Danner, P.M. Chaikin, Phys. Rev. Lett. 78, 3555 (1997)ADSGoogle Scholar
  44. 44.
    J.I. Oh, M.J. Naughton, Phys. Rev. Lett. 92, 067001 (2004)ADSGoogle Scholar
  45. 45.
    A.K. Clogston, Phys. Rev. Lett. 9, 266 (1962)ADSGoogle Scholar
  46. 46.
    B.S. Chandrasekhar, Appl. Phys. Lett. 1, 7 (1962)ADSGoogle Scholar
  47. 47.
    Y. Lu, T. Takayama, A.F. Bangura, Y. Katsura, D. Hashizume, H. Takagi, J. Phys. Soc. Jpn. 83, 023702 (2014)ADSGoogle Scholar
  48. 48.
    A.G. Lebed, K. Yamaji, Phys. Rev. Lett. 80, 2697 (1998)ADSGoogle Scholar
  49. 49.
    A.G. Lebed, Phys. Rev. B 59, R721 (1999)ADSGoogle Scholar
  50. 50.
    I.J. Lee, D.S. Chow, W.G. Clark, M.J. Strouse, M.J. Naughton, P.M. Chaikin, S.E. Brown, Phys. Rev. B 68, 092510 (2003)ADSGoogle Scholar
  51. 51.
    A.G. Lebed, K. Machida, M. Ozaki, Phys. Rev. B 62, R795 (2000)ADSGoogle Scholar
  52. 52.
    S. Yonezawa, Y. Maeno, K. Bechgaard, D. Jérome, Phys. Rev. B 85, 140502(R) (2012)ADSGoogle Scholar
  53. 53.
    F.L. Pratt, T. Lancaster, S.J. Blundell, C. Baines, Phys. Rev. Lett. 110, 107005 (2013)ADSGoogle Scholar
  54. 54.
    J.M. Williams, J.R. Ferraro, R.J. Thorn, K.D. Carlson, U. Geiser, H.H. Wang, A.M. Kini, M.H. Whangbo, Organic Superconductors: Synthesis, Structure, Properties, and Theory (Prentice Hall, Englewood Cliffs, 1992)Google Scholar
  55. 55.
    J. Singleton, C. Mielke, Contemp. Phys. 43, 63 (2002)ADSGoogle Scholar
  56. 56.
    M.V. Kartsovnik, Chem. Rev. 104, 5737 (2004)Google Scholar
  57. 57.
    J. Singleton, Rep. Prog. Phys. 63, 1111 (2000)ADSGoogle Scholar
  58. 58.
    J. Wosnitza, G. Goll, D. Beckmann, S. Wanka, D. Schweitzer, W. Strunz, J. Phys. I (France) 6, 1597 (1996)Google Scholar
  59. 59.
    D. Beckmann, S. Wanka, J. Wosnitza, D. Schweitzer, W. Strunz, Z. Phys. B 104, 207 (1997)ADSGoogle Scholar
  60. 60.
    J. Wosnitza, J. Hagel, J.S. Qualls, J.S. Brooks, E. Balthes, D. Schweitzer, J.A. Schlueter, U. Geiser, J. Mohtasham, R.W. Winter, G.L. Gard, Phys. Rev. B 65, 180506(R) (2002)ADSGoogle Scholar
  61. 61.
    J. Wosnitza, J. Hagel, O. Ignatchik, B. Bergk, V.M. Gvozdikov, J.A. Schlueter, R.W. Winter, G.L. Gard, J. Low Temp. Phys. 142, 327 (2006)ADSGoogle Scholar
  62. 62.
    R.H. McKenzie, P. Moses, Phys. Rev. Lett. 81, 4492 (1998)ADSGoogle Scholar
  63. 63.
    P. Moses, R.H. McKenzie, Phys. Rev. B 60, 7998 (1999)ADSGoogle Scholar
  64. 64.
    J. Wosnitza, S. Wanka, J. Hagel, E. Balthes, N. Harrison, J.A. Schlueter, A.M. Kini, U. Geiser, J. Mohtasham, R.W. Winter, G.L. Gard, Phys. Rev. B 61, 7383 (2000)ADSGoogle Scholar
  65. 65.
    J. Wosnitza, J. Hagel, P.J. Meeson, D. Bintley, J.A. Schlueter, J. Mohtasham, R.W. Winter, G.L. Gard, Phys. Rev. B 67, 060504(R) (2003)ADSGoogle Scholar
  66. 66.
    J. Wosnitza, S. Wanka, J. Hagel, H.v Löhneysen, J.S. Qualls, J.S. Brooks, E. Balthes, J.A. Schlueter, U. Geiser, J. Mohtasham, R.W. Winter, G.L. Gard, Phys. Rev. Lett 86, 508 (2001)ADSGoogle Scholar
  67. 67.
    S. Wanka, D. Beckmann, J. Wosnitza, E. Balthes, D. Schweitzer, W. Strunz, H.J. Keller, Phys. Rev. B 53, 9301 (1996)ADSGoogle Scholar
  68. 68.
    N.R. Werthamer, E. Helfand, P.C. Hohenberg, Phys. Rev. 147, 295 (1966)ADSGoogle Scholar
  69. 69.
    P. Müller, Advances in Solid State Physics (Vieweg, Braunschweig, 1994)Google Scholar
  70. 70.
    S. Uji, H. Shinagawa, T. Terashima, T. Yakabe, Y. Terai, M. Tokumoto, A. Kobayashi, H. Tanaka, H. Kobayashi, Nature 410, 908 (2001)ADSGoogle Scholar
  71. 71.
    L. Balicas, J.S. Brooks, K. Storr, S. Uji, M. Tokumoto, H. Tanaka, H. Kobayashi, A. Kobayashi, V. Barzykin, L.P. Gor’kov, Phys. Rev. Lett. 87, 067002 (2001)ADSGoogle Scholar
  72. 72.
    V. Jaccarino, M. Peter, Phys. Rev. Lett. 9, 290 (1962)ADSGoogle Scholar
  73. 73.
    S.M.D. Soto, C.P. Slichter, A.M. Kini, H.H. Wang, U. Geiser, J.M. Williams, Phys. Rev. B 52, 10 364 (1995)Google Scholar
  74. 74.
    H. Mayaffre, P. Wzietek, D. Jérome, C. Lenoir, P. Batail, Phys. Rev. Lett. 75, 4122 (1995)ADSGoogle Scholar
  75. 75.
    K. Kanoda, K. Miyagawa, A. Kawamoto, Y. Nakazawa, Phys. Rev. B 54, 76 (1996)ADSGoogle Scholar
  76. 76.
    A.M. Kini, J.A. Schlueter, B.H. Ward, U. Geiser, H.H. Wang, Synth. Met. 120, 713 (2001)Google Scholar
  77. 77.
    A.M. Kini, K.D. Carlson, H.H. Wang, J.A. Schlueter, J.D. Dudek, S.A. Sirchio, U. Geiser, K.R. Lykke, J.M. Williams, Phys. C 264, 81 (1996)ADSGoogle Scholar
  78. 78.
    L. Pintschovius, H. Rietschel, T. Sasaki, H. Mori, S. Tanaka, N. Toyota, M. Lang, F. Steglich, Europhys. Lett. 37, 627 (1997)ADSGoogle Scholar
  79. 79.
    F. Weber, A. Kreyssig, L. Pintschovius, R. Heid, W. Reichardt, D. Reznik, O. Stockert, K. Hradil, Phys. Rev. Lett. 101, 237002 (2008)ADSGoogle Scholar
  80. 80.
    D. Pedron, G. Visentini, R. Bozio, J.M. Williams, J.A. Schlueter, Phys. C 276, 1 (1997)ADSGoogle Scholar
  81. 81.
    S. Belin, K. Behnia, A. Deluzet, Phys. Rev. Lett. 81, 4728 (1998)ADSGoogle Scholar
  82. 82.
    K. Izawa, H. Yamaguchi, T. Sasaki, Y. Matsuda, Phys. Rev. Lett. 88, 027002 (2002)ADSGoogle Scholar
  83. 83.
    M.A. Tanatar, T. Ishiguro, H. Tanaka, H. Kobayashi, Phys. Rev. B 66, 134503 (2002)ADSGoogle Scholar
  84. 84.
    S. Kühlmorgen, R. Schönemann, E.L. Green, J. Müller, J. Wosnitza, J. Phys. Condens. Matter 29, 405604 (2017)Google Scholar
  85. 85.
    M.A. Tanatar, J. Paglione, S. Nakatsuji, D.G. Hawthorn, E. Boaknin, R.W. Hill, F. Ronning, M. Sutherland, L. Taillefer, C. Petrovic, P.C. Canfield, Z. Fisk, Phys. Rev. Lett. 95, 067002 (2005)ADSGoogle Scholar
  86. 86.
    R.C. Yu, M.B. Salamon, J.P. Lu, W.C. Lee, Phys. Rev. Lett. 69, 1431 (1992)ADSGoogle Scholar
  87. 87.
    K. Krishana, J.M. Harris, N.P. Ong, Phys. Rev. Lett. 75, 3529 (1995)ADSGoogle Scholar
  88. 88.
    F. Creuzet, C. Bourbonnais, D. Jérome, D. Schweitzer, H.J. Keller, Europhys. Lett. 1, 467 (1986)ADSGoogle Scholar
  89. 89.
    F. Creuzet, C. Bourbonnais, G. Creuzet, D. Jérome, D. Schweitzer, H.J. Keller, Phys. B 143, 363 (1986)Google Scholar
  90. 90.
    S.M.D. Soto, C.P. Slichter, H.H. Wang, U. Geiser, J.M. Williams, Phys. Rev. Lett. 70, 2956 (1993)ADSGoogle Scholar
  91. 91.
    G. Koutroulakis, H. Kühne, H.H. Wang, J.A. Schlueter, J. Wosnitza, S.E. Brown, arXiv:1601.06107 (2016)
  92. 92.
    T. Imai, T. Shimizu, H. Yasuoka, Y. Ueda, K. Kosuge, J. Phys. Soc. Jpn. 57, 2280 (1988)ADSGoogle Scholar
  93. 93.
    D.E. MacLaughlin, C. Tien, W.G. Clark, M.D. Lan, Z. Fisk, J.L. Smith, H.R. Ott, Phys. Rev. Lett. 53, 1833 (1984)ADSGoogle Scholar
  94. 94.
    G.-Q. Zheng, K. Tanabe, T. Mito, S. Kawasaki, Y. Kitaoka, D. Aoki, Y. Haga, Y. Onuki, Phys. Rev. Lett. 86, 4664 (2001)ADSGoogle Scholar
  95. 95.
    J. Merino, R.H. McKenzie, Phys. Rev. Lett. 87, 237002 (2001)ADSGoogle Scholar
  96. 96.
    T. Arai, K. Ichimura, K. Nomura, S. Takasaki, J. Yamada, S. Nakatsuji, H. Anzai, Phys. Rev. B 63, 104518 (2001)ADSGoogle Scholar
  97. 97.
    K. Ichimura, M. Takami, K. Nomura, J. Phys. Soc. Jpn. 77, 114707 (2008)ADSGoogle Scholar
  98. 98.
    Y. Oka, H. Nobukane, N. Matsunaga, K. Nomura, K. Katono, K. Ichimura, A. Kawamoto, J. Phys. Soc. Jpn. 84, 064713 (2015)ADSGoogle Scholar
  99. 99.
    D. Guterding, S. Diehl, M. Altmeyer, T. Methfessel, U. Tutsch, H. Schubert, M. Lang, J. Müller, M. Huth, H.O. Jeschke, R. Valentí, M. Jourdan, H.-J. Elmers, Phys. Rev. Lett. 116, 237001 (2016)ADSGoogle Scholar
  100. 100.
    D. Guterding, M. Altmeyer, H.O. Jeschke, R. Valentí, Phys. Rev. B 94, 024515 (2016)ADSGoogle Scholar
  101. 101.
    H. Elsinger, J. Wosnitza, S. Wanka, J. Hagel, D. Schweitzer, W. Strunz, Phys. Rev. Lett. 84, 6098 (2000)ADSGoogle Scholar
  102. 102.
    J. Wosnitza, S. Wanka, J. Hagel, M. Reibelt, D. Schweitzer, J.A. Schlueter, Synth. Met. 133–134, 201 (2003)Google Scholar
  103. 103.
    J. Wosnitza, X. Liu, D. Schweitzer, H.J. Keller, Phys. Rev. B 50, 12747 (1994)ADSGoogle Scholar
  104. 104.
    S. Wanka, J. Hagel, D. Beckmann, J. Wosnitza, J.A. Schlueter, J.M. Williams, P.G. Nixon, R.W. Winter, G.L. Gard, Phys. Rev. B 57, 3084 (1998)ADSGoogle Scholar
  105. 105.
    A.E. Kovalev, T. Ishiguro, J. Yamada, S. Takasaki, H. Anzai, JETP 92, 1035 (2001)ADSGoogle Scholar
  106. 106.
    J. Müller, M. Lang, R. Helfrich, F. Steglich, T. Sasaki, Phys. Rev. B 65, 140509(R) (2002)ADSGoogle Scholar
  107. 107.
    R. Beyer, J. Wosnitza, Low Temp. Phys. 39, 293 (2013)Google Scholar
  108. 108.
    R. Beyer, B. Bergk, S. Yasin, J.A. Schlueter, J. Wosnitza, Phys. Rev. Lett. 109, 027003 (2012)ADSGoogle Scholar
  109. 109.
    J. Wosnitza, Ann. Phys. 530, 1700282 (2018)Google Scholar
  110. 110.
    G. Varelogiannis, Phys. Rev. Lett. 88, 117005 (2002)ADSGoogle Scholar
  111. 111.
    P. Fulde, R.A. Ferrell, Phys. Rev. 135, A550 (1964)ADSGoogle Scholar
  112. 112.
    A. I. Larkin and Y. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 47, 1136 (1964) [Sov. Phys. JETP 20, 762 (1965)]Google Scholar
  113. 113.
    Y. Matsuda, H. Shimahara, J. Phys. Soc. Jpn. 76, 051005 (2007)ADSGoogle Scholar
  114. 114.
    G. Zwicknagl, J. Wosnitza in: BCS: 50 years edited by L. N. Cooper and D. Feldman, (World Scientific, Singapore, 2011) p. 337–371Google Scholar
  115. 115.
    G. Zwicknagl, J. Wosnitza, Int. J. Mod. Phys. B 24, 3915 (2010)ADSGoogle Scholar
  116. 116.
    K. Maki, T. Tsuneto, Prog. Theor. Phys. 31, 945 (1964)ADSGoogle Scholar
  117. 117.
    L.W. Gruenberg, L. Gunther, Phys. Rev. Lett. 16, 996 (1966)ADSGoogle Scholar
  118. 118.
    R. Lortz, Y. Wang, A. Demuer, P.H.M. Böttger, B. Bergk, G. Zwicknagl, Y. Nakazawa, J. Wosnitza, Phys. Rev. Lett. 99, 187002 (2007)ADSGoogle Scholar
  119. 119.
    B. Bergk, A. Demuer, I. Sheikin, Y. Wang, J. Wosnitza, Y. Nakazawa, R. Lortz, Phys. C 470, 586 (2010)ADSGoogle Scholar
  120. 120.
    B. Bergk, A. Demuer, I. Sheikin, Y. Wang, J. Wosnitza, Y. Nakazawa, R. Lortz, Phys. Rev. B 83, 064506 (2011)ADSGoogle Scholar
  121. 121.
    C.C. Agosta, N.A. Fortune, S.T. Hannahs, S. Gu, L. Liang, J. Park, J.A. Schlueter, Phys. Rev. Lett. 118, 267001 (2017)ADSGoogle Scholar
  122. 122.
    J.A. Wright, E. Green, P. Kuhns, A. Reyes, J. Brooks, J. Schlueter, R. Kato, H. Yamamoto, M. Kobayashi, S.E. Brown, Phys. Rev. Lett. 107, 087002 (2011)ADSGoogle Scholar
  123. 123.
    H. Mayaffre, S. Krämer, M. Horvatić, C. Berthier, K. Miyagawa, K. Kanoda, V.F. Mitrovic, Nat. Phys. 10, 928 (2014)Google Scholar
  124. 124.
    J. Wosnitza, S. Wanka, J.S. Qualls, J.S. Brooks, C.H. Mielke, N. Hanison, J.A. Schlueter, J.M. Williams, P.G. Nixon, R.W. Winter, G.L. Gard, Synth. Metals 103, 2000 (1999)Google Scholar
  125. 125.
    M.D. Croitoru, M. Houzet, A.I. Buzdin, Phys. Rev. Lett. 108, 207005 (2012)ADSGoogle Scholar
  126. 126.
    G. Koutroulakis, H. Kühne, J.A. Schlueter, J. Wosnitza, S.E. Brown, Phys. Rev. Lett. 116, 067003 (2016)ADSGoogle Scholar
  127. 127.
    S. Molatta, Ph.D. thesis 2018, TU DresdenGoogle Scholar
  128. 128.
    A. Bianchi, R. Movshovich, C. Capan, P. Pagliuso, J. Sarrao, Phys. Rev. Lett. 91, 187004 (2003)ADSGoogle Scholar
  129. 129.
    H.A. Radovan, N.A. Fortune, T.P. Murphy, S.T. Hannahs, E.C. Palm, S.W. Tozer, D. Hall, Nature 425, 51 (2003)ADSGoogle Scholar
  130. 130.
    M. Kenzelmann, T. Strässle, C. Niedermayer, M. Sigrist, B. Padmanabhan, M. Zolliker, A.D. Bianchi, R. Movshovich, E.D. Bauer, J.L. Sarrao, J.D. Thompson, Science 321, 1652 (2008)ADSGoogle Scholar
  131. 131.
    S. Kitagawa, G. Nakamine, K. Ishida, H.S. Jeevan, C. Geibel, F. Steglich, Phys. Rev. Lett. 121, 157004 (2018)ADSGoogle Scholar
  132. 132.
    C. Cho, J.H. Yang, N.F.Q. Yuan, J. Shen, T. Wolf, R. Lortz, Phys. Rev. Lett. 119, 217002 (2017)ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Hochfeld-Magnetlabor Dresden (HLD-EMFL) and Würzburg-Dresden Cluster of Excellence ct.qmatHelmholtz-Zentrum Dresden-RossendorfDresdenGermany

Personalised recommendations