Advertisement

Spin Effect of the Bound Magnetopolaron in a Triangular Quantum Well

  • Shu-Ping ShanEmail author
  • Shi-Hua Chen
Article
  • 1 Downloads

Abstract

The spin effect of bound magnetopolaron in a triangular quantum well is investigated within Pekar variational method. The expression of the bound magnetopolaron ground-state energy is obtained through theoretical calculation. The relationship between the ground-state energy of the polaron and the wave vector, the electron areal density, the magnetic field cyclotron resonance frequency and the Coulomb bound potential is discussed, respectively. Due to the crystal structural inversion asymmetry and the time inversion asymmetry, the polaron energy experiences Rashba spin–orbit splitting and Zeeman splitting. We discussed the dominant position of Rashba effect and Zeeman effect in strong and weak magnetic fields, respectively. Due to the presence of impurities, the polaron is more stable than the bare electron state, and the energy splitting of polaron is more stable.

Keywords

Rashba effect Zeeman effect Bound magnetopolaron Triangular quantum well 

Notes

Acknowledgements

This work was supported by Natural Science Foundation of Fujian Province (Grant No. 2019J01797) and Longyan University National Fund Cultivation Project (Grant No. LG2014003).

References

  1. 1.
    E.I. Rashba, A.I.L. Efros, Phys. Rev. Lett. 91, 126405 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    S.A. Wolf, D.D. Awschalom, R.A. Buhrman et al., Science 294, 1488 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    S. Datta, B. Das, Appl. Phys. Lett. 56, 665 (1990)ADSCrossRefGoogle Scholar
  4. 4.
    A. Noiri, J. Yoneda, T. Nakajima, T. Otsuka et al., Appl. Phys. Lett. 108, 153101 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    A. Hofmann, V.F. Maisi, T. Krähenmann, C. Reichl et al., Phys. Rev. Lett. 119, 176807 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    R. Ferdous, K.W. Chan, M. Veldhorst, J.C.C. Hwang et al., Phys. Rev. B 97, 241401 (2018)ADSCrossRefGoogle Scholar
  7. 7.
    D. Chevallier, P. Szumniak, S. Hoffman, D. Loss et al., Phys. Rev. B 97, 045404 (2018)ADSCrossRefGoogle Scholar
  8. 8.
    S.-S. Li, J.-B. Xia, Nanoscale Res. Lett. 4, 178 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    J.P. Stanley, N. Pattinson, C.J. Lambert, J.H. Je-erson, Phys. E 20, 433 (2004)CrossRefGoogle Scholar
  10. 10.
    S. Jin, H. Wu, T. Xu, Appl. Phys. Lett. 95, 132105 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    E. Lipparini, M. Barranco, F. Maletand, M. Pi, Phys. Rev. B 74, 115303 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Physics and ElectromechanicsFujian Longyan UniversityLongyanChina
  2. 2.Department of Electrical EngineeringHuzhou Vocational Technology CollegeHuzhouChina

Personalised recommendations