Dielectric Loss of Boron-Based Dielectrics on Niobium Resonators

  • David S. WisbeyEmail author
  • Michael R. Vissers
  • Jiansong Gao
  • Jeff S. Kline
  • Martin O. Sandberg
  • Martin P. Weides
  • M. M. Paquette
  • S. Karki
  • Jacob Brewster
  • Dheyaa Alameri
  • Irma Kuljanishvili
  • Anthony N. Caruso
  • Dave P. Pappas


Advanced solid-state quantum bits (qubits) are likely to require a variety of dielectrics for wiring crossovers, substrates, and Josephson junctions. Microwave superconducting resonators are an excellent tool for measuring the internal dielectric loss of materials. We report the dielectric loss of boron-based dielectric films using a microwave coplanar waveguide (CPW) resonator with heterostructure geometry. Power-dependent internal quality factors of magnetron-sputtered boron carbide (\(\hbox {B}_{{4}}\hbox {C}\)) and boron nitride (BN) were measured and are compared to silicon oxide (\(\hbox {SiO}_{{2}}\)), a common material used in wiring crossovers. The internal dielectric loss due to two-level systems for \(\hbox {B}_{{4}}\hbox {C}\), and BN is less than silicon dioxide (\(\hbox {SiO}_{{2}}\)), which demonstrates the existence of low-loss sputtered materials. We also found that niobium (Nb) CPW resonators suffer a decrease in internal quality factor after deposition of \(\hbox {B}_{{4}}\hbox {C}\) at temperatures above 150 \(^{\circ }\hbox {C}\). This result is consistent with the idea that the oxidation of the surface of the superconducting metal can contribute to loss in a device.


Superconducting resonator Low-temperature loss Two-level systems Boron nitride Boron carbide 



  1. 1.
    J.M. Sage, V. Bolkhovsky, W.D. Oliver, B. Turek, P.B. Welander, J. Appl. Phys. 109, 063915 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    V.L. Solozhenko, N.A. Dubrovinskaia, L.S. Dubrovinsky, Appl. Phys. Lett. 85, 1508 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    R. Sousa, Phys. Rev. B 76, 245306 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    F. Yoshihara, Y. Nakamura, J.S. Tsai, Phys. Rev. B 81, 132502 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    M.D. Wiggins, C.R. Aita, J. Vac. Sci. Tech. 2, 322 (1984)ADSCrossRefGoogle Scholar
  6. 6.
    J. Gao, Caltech Ph.D. thesis (2008)Google Scholar
  7. 7.
    A.D. O’Connell, M. Ansmann, R.C. Bialczak, M. Hofheinz, N. Katz, E. Lucero, C. McKenney, M. Neeley, H. Wang, E.M. Weig, A.N. Cleland, J.M. Martinis, Appl. Phys. Lett. 92, 112903 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    J. Gao, M. Daal, A. Vayonakis, S. Kumar, J. Zmuidzinas, B. Sadoulet, B.A. Mazin, P.K. Day, H.G. Leduc, Appl. Phys. Lett. 92, 152505 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    R. Barends, H.L. Hortensius, T. Zijlstra, J.J.A. Baselmans, S.J.C. Yates, J.R. Gao, T.M. Klapwijk, Appl. Phys. Lett. 92, 223502 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    H. Paik, K.D. Osborn, Appl. Phys. Lett. 96, 072505 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    A. Brunoa, S.T. Skacelc, Ch. Kaiserc, S. Wünschc, M. Siegelc, A.V. Ustinovd, M.P. Lisitskiya, Physics Procedia 36, 245–249 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    D. Wisbey, J. Gao, M. Vissers, Fabio C.S. da Silva, J.S. Kline, L. Vale, D. Pappas, J. Appl. Phys. 108, 093918 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    A. Megrant, C. Neill, R. Barends, B. Chiaro, Y. Chen, L. Feigl, J. Kelly, E. Lucero, M. Mariantoni, P. O’Malley, D. Sank, A. Vainsencher, J. Wenner, T. White, Y. Yin, J. Zhao, C. Palmstrøm, J. Martinis, A. Cleland, Appl. Phys. Lett. 100, 113510 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    C. Song, T.W. Heitmann, M.P. DeFeo, K. Yu, R. McDermott, M. Neeley, J.M. Martinis, B.L.T. Plourde, Phys. Rev. B 79, 174512 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    M. Göppl, A. Fragner, M. Baur, R. Bianchetti, S. Filipp, J.M. Fink, P.J. Leek, J. Appl. Phys. 104, 113904 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    D.P. Pappas, M.R. Vissers, D.S. Wisbey, J.S. Kline, J. Gao, I.E.E.E. Trans, Appl. Supercond. 21, 871 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    S. Probst, F.B. Song, P.A. Bushev, A.V. Ustinov, M. Weides, Rev. Sci. Instrum. 86, 024706 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    H. Wang, M. Hofheinz, J. Wenner, M. Ansmann, R. Bialczak, M. Lenander, E. Lucero, M. Neeley, A. O’Connell, D. Sank, M. Weides, A. Cleland, John Martinis, Appl. Phys. Lett. 95, 233508 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    R. N. Simons, in Coplanar Waveguide Circuits, Components, and Systems, ed. by K. Chang Willey Series in Microwave and Optical Engineering, Series (Wiley, 2001). ISBN:0-471-16121-7Google Scholar
  20. 20.
    O. Hellwig, H. Zabel, Physica B 283, 228 (2000)ADSCrossRefGoogle Scholar
  21. 21.
    O. Hellwig, H.W. Becker, H. Zabel, Phys. Rev. B 64, 233404 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    T. Proslier, J. Zasadzinski, J. Moore, M. Pellin, J. Elam, L. Cooley, C. Antoine, J. Norem, K.E. Gray, Appl. Phys. Lett. 93, 192504 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    J. Halbritter, Appl. Phys. A 43, 1–28 (1987)ADSCrossRefGoogle Scholar
  24. 24.
    A. Bruno, P. Mengucci, L.V. Mercaldo, M.P. Lisitskiy, Phys. Procedia 36, 239–244 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    B. Mazin, Caltech Ph.D. thesis (2008)Google Scholar
  26. 26.
    S. Oh, K. Cicak, J.S. Kline, M.A. Sillanp, K.D. Osborn, J.D. Whittaker, R.W. Simmonds, D.P. Pappas, Phys. Rev. B 74, 100502(R) (2006)ADSCrossRefGoogle Scholar
  27. 27.
    M. Weides, J.S. Kline, M. Vissers, M. Sandberg, D.S. Wisbey, B.R. Johnson, T. Ohki, D.P. Pappas, Appl. Phys. Lett. 99, 262502 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    P. Kumar, S. Sendelbach, M.A. Beck, J.W. Freeland, Zhe Wang, H. Wang, C.C. Yu, R.Q. Wu, D.P. Pappas, R. McDermott, Phys. Rev. Appl. 6, 041001 (2016)ADSCrossRefGoogle Scholar
  29. 29.
    W.A. Phillips, Rep. Prog. Phys. 50, 1657 (1987)ADSCrossRefGoogle Scholar
  30. 30.
    M. Von Schickfus, S. Hunklinger, Phys. Lett. 64, 144 (1977)CrossRefGoogle Scholar
  31. 31.
    M. Von Schichfus, S. Hunklinger, J. Phys. C: Solid State Phys. 9, L439 (1976)CrossRefGoogle Scholar
  32. 32.
    H. Werheit, H.W. Rotter, F.D. Meyer, H. Hillebrecht, S.O. Shalamberdze, T.G. Abzianidze, G.G. Esadze, J. Solid State Chem. 177, 569 (2004)ADSCrossRefGoogle Scholar
  33. 33.
    H. Werheit, T. Au, R. Schmechel, J. Solid State Chem. 154, 79 (1999)ADSCrossRefGoogle Scholar
  34. 34.
    R. Schmechel, H. Werheit, J. Phys. Condens. Matter 11, 6803 (1999)ADSCrossRefGoogle Scholar
  35. 35.
    L.G. Jacobsohn, M. Nastasi, Surf. Coat. Technol. 200, 1472 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • David S. Wisbey
    • 1
    Email author
  • Michael R. Vissers
    • 2
  • Jiansong Gao
    • 2
  • Jeff S. Kline
    • 2
  • Martin O. Sandberg
    • 3
  • Martin P. Weides
    • 4
  • M. M. Paquette
    • 5
  • S. Karki
    • 5
  • Jacob Brewster
    • 1
  • Dheyaa Alameri
    • 1
  • Irma Kuljanishvili
    • 1
  • Anthony N. Caruso
    • 5
  • Dave P. Pappas
    • 2
  1. 1.Department of PhysicsSaint Louis UniversitySt. LouisUSA
  2. 2.National Institute of Standards and TechnologyBoulderUSA
  3. 3.IBMArmonk, New YorkUSA
  4. 4.School of EngineeringUniversity of GlasgowGlasgowUK
  5. 5.Department of Physics and AstronomyUniversity of Missouri-Kansas CityKansas CityUSA

Personalised recommendations