Advertisement

Thermalization of an Oscillating Bose Condensate in a Disordered Trap

  • Che-Hsiu Hsueh
  • Makoto Tsubota
  • Wen-Chin WuEmail author
Article
  • 31 Downloads

Abstract

Previously, we numerically showed that thermalization can occur in an oscillating Bose–Einstein condensate with a disordered harmonic trap when the healing length \(\xi \) of the condensate is shorter than the correlation length \(\sigma _{D}\) of the Gaussian disorder [see, for example, the experiment reported in Dries et al. (Phys Rev A 82:033603, 2010)]. In this work, we investigate and show that in the \(\xi >\sigma _{D}\) (Anderson localization) regime, the system can also exhibit a relaxation process from nonequilibrium to equilibrium. In such an isolated quantum system, energy and particle number are conserved and the irreversible evolution toward thermodynamic equilibrium is induced by the disorder. The thermodynamic equilibrium is evidenced by the maximized entropy \(S\left[ n_{k}\right] \) in which the waveaction spectrum \(n_{k}\) follows the Rayleigh–Jeans distribution. Besides, unlike a monotonic irreversible process of thermalization to equilibrium, the Fermi–Pasta–Ulam–Tsingou recurrence arises in this system, manifested by the oscillation of the nonequilibrium entropy.

Keywords

Thermalization Disorder Irreversible process Anderson localization 

Notes

Acknowledgements

Financial supports from MOST, Taiwan (Grant No. MOST 107-2112-M-003-008), JSPS KAKENHI (Grant No. 17K05548) and MEXT KAKENHI/Fluctuation and Structure (Grant No. 16H00807), and NCTS of Taiwan are acknowledged.

References

  1. 1.
    K. Kinoshita, T. Wenger, D.S. Weiss, A quantum Newton’s cradle. Nature 440, 900 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    M. Rigol, V. Dunjko, M. Olshanii, Thermalization and its mechanism for generic isolated quantum systems. Nature 452, 854 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    A. Polkovnikov, K. Sengupta, A. Silva, M. Vengalattore, Colloquium: Nonequilibrium dynamics of closed interacting quantum systems. Rev. Mod. Phys. 83, 863–883 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    F. Borgonovi, F.M. Izrailev, L.F. Santos, V.G. Zelevinsky, Quantum chaos and thermalization in isolated systems of interacting particles. Phys. Rep. 626, 1–58 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    C.-H. Hsueh, R. Ong, J.-F. Tseng, M. Tsubota, W.C. Wu, Thermalization and localization of an oscillating Bose–Einstein condensate in a disordered trap. Phys. Rev. A 98, 063613 (2018)ADSCrossRefGoogle Scholar
  6. 6.
    D. Dries, S.E. Pollack, J.M. Hitchcock, R.G. Hulet, Dissipative transport of a Bose–Einstein condensate. Phys. Rev. A 82, 033603 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    C. Connaughton, C. Josserand, A. Picozzi, Y. Pomeau, S. Rica, Condensation of classical nonlinear waves. Phys. Rev. Lett. 95, 263901 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    A. Picozzi, Towards a nonequilibrium thermodynamic description of incoherent nonlinear optics. Optics Express 15, 9063 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    C. Sun, S. Jia, C. Barsi, S. Rica, A. Picozzi, J.W. Fleischer, Observation of the kinetic condensation of classical waves. Nat. Phys. 8, 470 (2012)CrossRefGoogle Scholar
  10. 10.
    N. Cherroret, T. Karpiuk, B. Grémaud, C. Miniatura, Thermalization of matter waves in speckle potentials. Phys. Rev. A 92, 063614 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    L. Sanchez-Palencia, D. Clément, P. Lugan, P. Bouyer, G.V. Shlyapnikov, A. Aspect, Anderson localization of expanding Bose–Einstein condensates in random potential. Phys. Rev. Lett. 98, 210401 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    L. Pitaevskii, S. Stringari, Bose–Einstein Condensation and Superfluidity, vol. 174 (Oxford University Press, Oxford, 2016)CrossRefzbMATHGoogle Scholar
  13. 13.
    S. Nazarenko, Wave Turbulence (Springer, Berlin, 2011)CrossRefzbMATHGoogle Scholar
  14. 14.
    J. Ford, The Fermi–Pasta–Ulam problem: paradox turns discovery. Phys. Rep. 213, 271–310 (1992)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    G.M. Zaslavsky, Long way from the FPU-problem to chaos. Chaos 15, 015103 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    M. Guasoni, J. Garnier, B. Rumpf, D. Sugny, J. Fatome, F. Amrani, G. Millot, A. Picozzi, Incoherent Fermi–Pasta–Ulam recurrences and unconstrained thermalization mediated by strong phase correlations. Phys. Rev. X 7, 011025 (2017)Google Scholar
  17. 17.
    P. Aschieri, J. Garnier, C. Michel, V. Doya, A. Picozzi, Condensation and thermalization of classical optical waves in a waveguide. Phys. Rev. A 83, 033838 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsNational Taiwan Normal UniversityTaipeiTaiwan
  2. 2.Department of PhysicsOsaka City UniversityOsakaJapan
  3. 3.The OCU Advanced Research Institute for Natural Science and Technology (OCARINA)OsakaJapan

Personalised recommendations