Advertisement

The Effect of Coulomb Impurity Potential on the Coherence Time of RbCl Quantum Pseudodot Qubit

  • Jing-Lin XiaoEmail author
Article
  • 2 Downloads

Abstract

We have considered the pseudoharmonic potential (PHP) for a RbCl quantum pseudodot (QPD) qubit with a hydrogen-like impurity at the center. By employing the Pekar variational method and the Fermi Golden Rule, we study the properties of the coherence time of an electron strongly interacting with longitudinal optical phonon in a RbCl QPD qubit. The coherence time changing with the Coulombic impurity potential strength, the two-dimensional chemical potential of the electron gas, the PHP zero point and the polaron radius is theoretically investigated. The obtained results indicate that ① the coherence time of RbCl QPD qubit decreases with increasing Coulombic impurity potential strength, ② the coherence time is a decaying function of the two-dimensional chemical potential of the electron gas and the PHP zero point, ③ the smaller the polaron radius is, the smaller the coherence time is.

Keywords

RbCl quantum pseudodot qubit Coherence time Coulombic impurity potential 

Notes

Acknowledgements

This project was supported by the National Science Foundation of China under Grant Nos. 11464033 and 11464034.

References

  1. 1.
    B. Hackens, S. Faniel, C. Gustin, X. Wallart, S. Bollaert, A. Cappy, V. Bayot, Phys. Rev. Lett. 94, 146802 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    J. Hackmann, P. Glasenapp, A. Greilich, M. Bayer, F.B. Anders, Phys. Rev. Lett. 115, 207401 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    X.Z. Yuan, K.D. Zhu, W.S. Li, Eur. Phys. J. D 31, 499 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    J. Wiersig, Phys. Status Solidi B 248, 883 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    J.L. Xiao, Superlattices Microstruct. 90, 308 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    Y.J. Chen, H.T. Song, J.L. Xiao, Superlattices Microstruct. 118, 92 (2018)ADSCrossRefGoogle Scholar
  7. 7.
    Y.J. Chen, X. Wang, Int. J. Theor. Phys. 57, 3540 (2018)CrossRefGoogle Scholar
  8. 8.
    Y. J. Chen, P. Y. Zhang. J. Low. Temp. Phys. 194, 262 (2019)ADSCrossRefGoogle Scholar
  9. 9.
    X.J. Ma, B. Qi, J.L. Xiao, J. Low Temp. Phys. 180, 315 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    S.I. Pekar, M.F. Deigen, Z. Eksp, Teor. Fiz. 18, 481 (1948)Google Scholar
  11. 11.
    S.I. Pekar, Untersuchungen über die Elektronen-theorie der Kristalle (Akademie Verlag, Berlin, 1954)zbMATHGoogle Scholar
  12. 12.
    Z.H. Ding, Y. Sun, J.L. Xiao, Int. J. Quantum Inf. 10, 1250077 (2012)MathSciNetCrossRefGoogle Scholar
  13. 13.
    W. Xiao, J.L. Xiao, Superlattices Microstruct. 52, 851 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    L.D. Landau, E.M. Lifshitz, Quantum Mechanics (Nonrelativistic Theory) (Pergamon Press, London, 1987)Google Scholar
  15. 15.
    J.T. Devreese, Polarons in Ionic Crystals and Polar Semiconductors (North-Holland, Amsterdam, 1972)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Condensed Matter PhysicsInner Mongolia University for the NationalitiesTongliaoChina

Personalised recommendations