Structural, Optical and EPR Study of Mn-Doped ZnO Nanocrystals

  • F. Acosta-Humánez
  • Luis Montes-Vides
  • O. AlmanzaEmail author


This paper presents the study of manganese-doped ZnO (Zn1−xMnxO) nanocrystals produced using the sol–gel method. In samples calcinated at a temperature of 873 K, we analyzed the influence of the manganese concentration on the structure and optical properties of these samples. From X-ray analysis, it could be inferred that there were no other phases in the Mn-doped samples, apart from a wurtzite phase. The lattice parameters do not change significantly with Mn concentration. c/a ratio exhibits a slight deviation when it is compared with the value of an optimal hexagonal closed-packed structure. Crystal size (Ds) was higher for Mn-doped samples, except for ZnO with 3% Mn doped. From UV–Vis measurements, band gap (Eg) values showed a blueshift (reduction in bandgap) when Mn concentration was higher than 3%. Electron paramagnetic resonance results determined that Mn ions were incorporated into the ZnO lattice in place of Zn2+, occupying a rhombic distortion of tetrahedral local symmetry.


EPR Nanocrystals Bandgap Doped ZnO 



The authors wish to thank the Departamento Administrativo de Ciencia, Tecnología e Innovación (COLCIENCIAS) for their financial support for F. Acosta-Humánez, through the scholarships. We would also like to thank the Universidad Nacional de Colombia where the research was conducted. Additionally, the authors thank Prof. Magon from the Universidad do Sâo Paulo—Campus Sâo Carlos for the electron paramagnetic resonance measurements.


  1. 1.
    M. Samadi, M. Zirak, A. Naseri, E. Khorashadizade, A.Z. Moshfegh, Thin Solid Films 605, 2 (2016)ADSCrossRefGoogle Scholar
  2. 2.
    F. Acosta-Humánez, R. Cogollo-Pitalua, O. Almanza, J. Magn. Magn. Mater. 329, 39 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    H. Morkoc, M. Ozgur, Zinc Oxide: Fundamentals, Materials and Device Technology (Wiley-VCH, 2009)Google Scholar
  4. 4.
    A. Becheri, M. Dürr, P. Lo Nostro, P. Baglioni, J. Nanopart. Res. 10, 679 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    H. Hosono, Thin Solid Films 515, 6000 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    V.M. De Almeida, A. Mesquita, A.O. De Zevallos, N.C. Mamani, P.P. Neves, X. Gratens, V.A. Chitta, W.B. Ferraz, A.C. Doriguetto, A.C.S. Sabioni, H.B. De Carvalho, J. Alloys Compd. 655, 406 (2016)CrossRefGoogle Scholar
  7. 7.
    M. Yuan, W. Fu, H. Yang, Q. Yu, S. Liu, Q. Zhao, Y. Sui, D. Ma, P. Sun, Y. Zhang, B. Luo, Mater. Lett. 63, 1574 (2009)CrossRefGoogle Scholar
  8. 8.
    V.D. Mote, Y. Purushotham, B.N. Dole, Mater. Des. 96, 99 (2016)CrossRefGoogle Scholar
  9. 9.
    M. Mazhdi, J. Saydi, M. Karimi, J. Seidi, F. Mazhdi, Optik 124, 4128 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    F. Achouri, S. Corbel, L. Balan, K. Mozet, E. Girot, G. Medjahdi, M.B. Said, A. Ghrabi, R. Schneider, Mater. Des. 101, 309 (2016)CrossRefGoogle Scholar
  11. 11.
    A.J. Reddy, M.K. Kokila, H. Nagabhushana, R.P.S. Chakradhar, C. Shivakumara, J.L. Rao, B.M. Nagabhushana, J. Alloys Compd. 509, 5349 (2011)CrossRefGoogle Scholar
  12. 12.
    K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds (Wiley, Hoboken, 2008)CrossRefGoogle Scholar
  13. 13.
    D. Moussa, D. El-Said Bakeer, R. Awad, A.M. Abdel-Gaber, J. Phys. Conf. Ser. 869, 1 (2017)CrossRefGoogle Scholar
  14. 14.
    A.J. Hashim, M.S. Jaafar, A.J. Ghazai, N.M. Ahmed, Opt. Int. J. Light Electron Opt. 124, 491 (2013)CrossRefGoogle Scholar
  15. 15.
    R.D. Shannon, Acta Crystallogr. A 32, 751 (1976)ADSCrossRefGoogle Scholar
  16. 16.
    M. Lorenz, R. Böttcher, S. Friedländer, A. Pöppl, D. Spemann, M. Grundmann, J. Mater. Chem. C 2, 4947 (2014)CrossRefGoogle Scholar
  17. 17.
    R. Böttcher, M. Lorenz, A. Pöppl, D. Spemann, M. Grundmann, J. Mater. Chem. C 3, 11918 (2015)CrossRefGoogle Scholar
  18. 18.
    A. Khorsand Zak, R. Yousefi, W.H.A. Majid, M.R. Muhamad, Ceram. Int. 38, 2059 (2012)CrossRefGoogle Scholar
  19. 19.
    Z. Zhang, F. Zhou, E.J. Lavernia, Metall. Mater. Trans. A 34, 1349 (2003)CrossRefGoogle Scholar
  20. 20.
    Q. Ma, X. Lv, Y. Wang, J. Chen, Opt. Mater. 60, 86 (2016)Google Scholar
  21. 21.
    S.A. Ahmed, Results Phys. 7, 604 (2017)ADSCrossRefGoogle Scholar
  22. 22.
    S.S. Turkiyilmaz, N. Güy, M. Özacar, J. Photochem. Photobiol. Chem. 341, 39 (2017)CrossRefGoogle Scholar
  23. 23.
    R. Bucheit, F. Acosta-Humánez, O. Almanza, Rev. Cuba. Física 33, 4 (2016)Google Scholar
  24. 24.
    A. Sáenz-Trevizo, P. Amézaga-Madrid, P. Pizá-Ruiz, W. Antúnez-Flores, M. Miki-Yoshida, Mater. Res. 19, 33 (2016)CrossRefGoogle Scholar
  25. 25.
    Q. Gao, Y. Dai, C. Li, L. Yang, X. Li, C. Cui, J. Alloys Compd. 684, 669 (2016)CrossRefGoogle Scholar
  26. 26.
    A. Mauger, Appl. Magn. Reson. 39, 3 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Grupo de Física Aplicada, Departamento de FísicaUniversidad Nacional de Colombia - Sede BogotáBogotáColombia
  2. 2.Departamento de GeocienciasUniversidad Nacional de ColombiaBogotáColombia

Personalised recommendations