Advertisement

Journal of Low Temperature Physics

, Volume 195, Issue 3–4, pp 307–318 | Cite as

Can Warmer than Room Temperature Electrons Levitate Above a Liquid Helium Surface?

  • A. D. ChepelianskiiEmail author
  • Masamitsu Watanabe
  • Kimitoshi Kono
Article
  • 46 Downloads

Abstract

We address the problem of overheating of electrons trapped on the liquid helium surface by cyclotron resonance excitation. Previous experiments suggest that electrons can be heated to temperatures up to 1000 K, more than three orders of magnitude higher than the temperature of the helium bath in the sub-Kelvin range. In this work we attempt to discriminate between a redistribution of thermal origin and other out-of-equilibrium mechanisms that would not require so high temperatures like resonant photo-galvanic effects or negative mobilities. We argue that for a heating scenario the direction of the electron flow under cyclotron resonance can be controlled by the shape of the initial electron density profile, with a dependence that can be modeled accurately within the Poisson–Boltzmann theory framework. This provides an self-consistency check to probe whether the redistribution is indeed consistent with a thermal origin. We find that while our experimental results are consistent with the Poisson–Boltzmann theoretical dependence, some deviations suggest that other physical mechanisms can also provide a measurable contribution. Analyzing our results with the heating model we find that the electron temperatures increase with electron density under the same microwave irradiation conditions. This unexpected density dependence calls for a microscopic treatment of the energy relaxation of overheated electrons.

Keywords

Electrons on helium Photo-transport Cyclotron resonance 

Notes

References

  1. 1.
    Y.P. Monarkha, K. Kono, Two-Dimensional Coulomb Liquids and Solids (Springer, Berlin, 2004)CrossRefGoogle Scholar
  2. 2.
    D. Konstantinov, K. Kono, Novel radiation-induced magnetoresistance oscillations in a nondegenerate two-dimensional electron system on liquid helium. Phys. Rev. Lett. 103, 266808 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    D. Konstantinov, K. Kono, Phys. Rev. Lett. 105, 226801 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    R. Yamashiro, L.V. Abdurakhimov, A.O. Badrutdinov, YuP Monarkha, D. Konstantinov, Photoconductivity response at cyclotron-resonance harmonics in a nondegenerate two-dimensional electron gas on liquid helium. Phys. Rev. Lett. 115, 256802 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    Denis Konstantinov, Alexei Chepelianskii, Kimitoshi Kono, Photoconductivity response at cyclotron-resonance harmonics in a nondegenerate two-dimensional electron gas on liquid helium. J. Phys. Soc. Jpn. 81, 093601 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    M.A. Zudov, R.R. Du, J.A. Simmons, J.L. Reno, Shubnikovde Haas-like oscillations in millimeterwave photoconductivity in a high-mobility two-dimensional electron gas. Phys. Rev. B 64, 201311(R) (2001)ADSCrossRefGoogle Scholar
  7. 7.
    R.G. Mani et al., Zero-resistance states induced by electromagnetic-wave excitation in GaAs/AlGaAs heterostructures. Nature 420, 646–650 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    M.A. Zudov, R.R. Du, L.N. Pfeiffer, K.W. West, Evidence for a new dissipationless effect in 2D electronic transport. Phys. Rev. Lett. 90, 045807 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    A.A. Bykov, Microwave-induced magnetic field state with zero conductivity in GaAs/AlAs Corbino disks and hall bars. JETP Lett. 87, 551 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    M.A. Zudov, O.A. Mironov, Q.A. Ebner, P.D. Martin, Q. Shi, D.R. Leadley, Observation of microwave-induced resistance oscillations in a high-mobility two-dimensional hole gas in a strained Ge/SiGe quantum well. Phys. Rev. B 89, 125401 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    D.F. Krcher, A.V. Shchepetilnikov, Yu A. Nefyodov, J. Falson, I.A. Dmitriev, Y. Kozuka, D. Maryenko, A. Tsukazaki, S.I. Dorozhkin, I.V. Kukushkin, M. Kawasaki, J.H. Smet, Observation of microwave induced resistance and photovoltage oscillations in MgZnO/ZnO heterostructures. Phys. Rev. B 93, 041410(R) (2016)ADSCrossRefGoogle Scholar
  12. 12.
    V.I. Ryzhii, Sov. Phys. Solid State 11, 2078 (1970)Google Scholar
  13. 13.
    A.C. Durst, S. Sachdev, N. Read, S.M. Girvin, Radiation-induced magnetoresistance oscillations in a 2D electron gas. Phys. Rev. Lett. 91, 086803 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    I.A. Dmitriev, A.D. Mirlin, D.G. Polyakov, Oscillatory ac conductivity and photoconductivity of a two-dimensional electron gas: quasiclassical transport beyond the Boltzmann equation. Phys. Rev. B 70, 165305 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    I.A. Dmitriev, M.G. Vavilov, I.L. Aleiner, A.D. Mirlin, D.G. Polyakov, Theory of microwave-induced oscillations in the magnetoconductivity of a two-dimensional electron gas. Phys. Rev. B 71, 115316 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    I.A. Dmitriev, A.D. Mirlin, D.G. Polyakov, Theory of fractional microwave-induced resistance oscillations. Phys. Rev. Lett. 99, 206805 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    A.D. Chepelianskii, J. Laidet, I. Farrer, H.E. Beere, D.A. Ritchie, H. Bouchiat, Enhancement of edge channel transport by a low-frequency irradiation. Phys. Rev. B 86, 205108 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    O.V. Zhirov, A.D. Chepelianksii, D.L. Shepelyansky, Towards a synchronization theory of microwave-induced zero-resistance states. Phys. Rev. B 88, 035410 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    Y.M. Beltukov, M.I. Dyakonov, Microwave-induced resistance oscillations as a classical memory effect. Phys. Rev. Lett. 116, 176801 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    I.A. Dmitriev, A.D. Mirlin, D.G. Polyakov, M.A. Zudov, Nonequilibrium phenomena in high Landau levels. Rev. Mod. Phys. 84, 1709–1763 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    A.A. Zadorozhko, YuA Monarkha, D. Konstantinov, Circular-polarizetion-dependent study of microwave-induced conductivity oscillations in a two-dimensional electron gas on liquid helium. Phys. Rev. Lett. 120, 046802 (2017)ADSCrossRefGoogle Scholar
  22. 22.
    J.H. Smet et al., Circular-polarization-dependent study of the microwave photoconductivity in a two-dimensional electron system. Phys. Rev. Lett. 95, 116804 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    T. Herrmann et al., Analog of microwave-induced resistance oscillations induced in GaAs heterostructures by terahertz radiation. Phys. Rev. B 94, 081301(R) (2016)ADSCrossRefGoogle Scholar
  24. 24.
    T. Herrmann et al., Magnetoresistance oscillations induced by high-intensity terahertz radiation. Phys. Rev. B 96, 115449 (2017)ADSCrossRefGoogle Scholar
  25. 25.
    R.G. Mani, A.N. Ramanayak, W. Wegscheider, Observation of linear-polarization-sensitivity in the microwave-radiation-induced magnetoresistance oscillations. Phys. Rev. B 84, 085308 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    A.N. Ramanayaka, R.G. Mani, J. Inarrea, W. Wegscheider, Effect of rotation of the polarization of linearly polarized microwaves on the radiation-induced magnetoresistance oscillations. Phys. Rev. B 85, 205315 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    A.D. Chepelianskii, D.L. Shepelyansky, Microwave stabilization of edge transport and zero-resistance states. Phys. Rev. B 80, 241308(R) (2009)ADSCrossRefGoogle Scholar
  28. 28.
    S.A. Mikhailov, Theory of microwave-induced zero-resistance states in two-dimensional electron systems. Phys. Rev. B 83, 155303 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    A.D. Chepelianskii, D.L. Shepelyansky, Microwave stabilization of edge transport and zero-resistance states. Phys. Rev. B 97, 125415 (2018)ADSCrossRefGoogle Scholar
  30. 30.
    A.D. Chepelianskii, M. Watanabe, K. Nasyedkin, K. Kono, D. Konstantinov, An incompressible state of a photo-excited electron gas. Nat. Commun. 6, 7210 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    D. Konstantinov, M. Watanabe, K. Kono, Self-generated audio-frequency oscillations in 2D electrons with nonequilibrium carrier distribution on liquid helium. J. Phys. Soc. Jpn. 82, 075002 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    C.C. Grimes, T.R. Brown, M.L. Brown, C.L. Zipfel, Spectroscopy of electrons in image-potential-induced surface states outside liquid helium. Phys. Rev. B 13, 140 (1976)ADSCrossRefGoogle Scholar
  33. 33.
    D.K. Lambert, P.L. Richards, Far-infrared and capacitance measurements of electrons on liquid helium. Phys. Rev. B 23, 3282 (1981)ADSCrossRefGoogle Scholar
  34. 34.
    P.M. Platzman, M.I. Dykman, Quantum computing with electrons floating on liquid helium. Science 284, 1967 (1999)CrossRefGoogle Scholar
  35. 35.
    E. Collin, W. Bailey, P. Fozooni, P.G. Frayne, P. Glasson, K. Harrabi, M.J. Lea, G. Papageorgiou, Microwave saturation of the Rydberg states of electrons on helium. Phys. Rev. Lett. 89, 245301 (2002)ADSCrossRefGoogle Scholar
  36. 36.
    Denis Konstantinov, Hanako Isshiki, Yuriy Monarkha, Hikota Akimoto, Keiya Shirahama, Kimitoshi Kono, Microwave-resonance-induced resistivity, evidence of ultrahot surface-state electrons on liquid. Phys. Rev. Lett. 98, 235302 (2007)ADSCrossRefGoogle Scholar
  37. 37.
    Y. Monarkha, D. Konstantinov, K. Kono, Microwave absorption saturation and decay heating of surface electrons on liquid helium. Low Temp. Phys. 33, 718 (2007)ADSCrossRefGoogle Scholar
  38. 38.
    Denis Konstantinov, M.I. Dykman, M.J. Lea, Yuriy Monarkha, Kimitoshi Kono, Resonant correlation-induced optical bistability in an electron system on liquid helium. Phys. Rev. Lett. 103, 096801 (2009)ADSCrossRefGoogle Scholar
  39. 39.
    E. Collin, W. Bailey, P. Fozooni, P.G. Frayne, P. Glasson, K. Harrabi, M.J. Lea, Temperature-dependent energy levels of electrons on liquid helium. Phys. Rev. B 96, 235427 (2017)ADSCrossRefGoogle Scholar
  40. 40.
    M.I. Dykman, K. Kono, D. Konstantinov, M.J. Lea, Ripplonic Lamb shift for electrons on liquid helium. Phys. Rev. Lett. 119, 256802 (2017)ADSCrossRefGoogle Scholar
  41. 41.
    A.O. Badrutdinov, L.V. Abdurakhimov, D. Konstantinov, Cyclotron resonant photoresponse of a multisubband two-dimensional electron system on liquid helium. Phys. Rev. B 90, 075305 (2014)ADSCrossRefGoogle Scholar
  42. 42.
    A.O. Badrutdinov, D. Konstantinov, M. Watanabe, K. Kono, Experimental study of energy relaxation of hot electrons on liquid helium-4. EPL 104, 47007 (2013)ADSCrossRefGoogle Scholar
  43. 43.
    Y.P. Monarkha, Influence of shortwave surface excitations of liquid helium on damping effects in a two-dimensional electron gas Sov. J. Low Temp. Phys. 4, 515 (1978)Google Scholar
  44. 44.
    M.V. Entin, L.I. Magarill, Surface photocurrent in an electron gas over liquid He subjected to a quantizing magnetic field. JETP Lett. 98, 744 (2014)CrossRefGoogle Scholar
  45. 45.
    M.V. Entin, L.I. Magarill, Photogalvanic current in electron gas over a liquid helium surface. JETP Lett. 98, 816 (2014)ADSCrossRefGoogle Scholar
  46. 46.
    Y.P. Monarkha, Cyclotron-resonance-induced negative dc conductivity in a two-dimensional electron system on liquid helium. Phys. Rev. B 91, 121402 (2015)ADSCrossRefGoogle Scholar
  47. 47.
    Y.P. Monarkha, Density domains of a photo-excited electron gas on liquid helium. Low Temp. Phys. 42, 441 (2016)ADSCrossRefGoogle Scholar
  48. 48.
    Fabien Closa, Elie Raphel, Alexei D. Chepelianskii, Transport properties of overheated electrons trapped on a helium surface. Eur. Phys. J. B 87, 190 (2014)ADSCrossRefGoogle Scholar
  49. 49.
    A. Chepelianskii, F. Mohammad-Rafiee, E. Trizac, E. Raphal, On the effective charge of hydrophobic polyelectrolytes. J. Phys. Chem. B 113, 3743 (2009)CrossRefGoogle Scholar
  50. 50.
    A.D. Chepelianskii, F. Closa, E. Raphal, E. Trizac, Strong Screen. Plum Pudding Model 94, 68010 (2011)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratoire de Physique des solides, CNRSUniv. Paris-Sud, Université Paris-Saclay, LPS-OrsayOrsayFrance
  2. 2.RIKEN Nishina CenterWako, SaitamaJapan
  3. 3.International College of Semiconductor Technology, NCTUHsinchuTaiwan
  4. 4.RIKEN CEMSWakoJapan

Personalised recommendations