Support Vector Regression Ensemble for Effective Modeling of Magnetic Ordering Temperature of Doped Manganite in Magnetic Refrigeration

  • Taoreed O. OwolabiEmail author
  • Kabiru O. Akande
  • Sunday O. Olatunji
  • Nahier Aldhafferi
  • Abdullah Alqahtani


Magnetic refrigeration technology (MRT) is an affordable and efficient refrigeration system that can conveniently replace the present conventional gas compression and expansion (GCE) system of refrigeration. Apart from the fact that GCE refrigeration system has reached its thermodynamic limit and releases ozone depleting gases that is harmful to the environment, its non-compactness and lower energy efficiency are of serious concerns that remain unaddressed. Utilization of solid magnetic refrigerant in MRT aids its compactness and enhances environmental friendliness system of refrigeration. Manganite refrigerants have recently attracted attention from experimental and modeling perspectives due to its stability, cost-effectiveness as well as tunable magnetic properties as compared to the existing metal gadolinium refrigerant. However, magnetic ordering temperature of manganite refrigerants plays a crucial role in the implementation of MRT at ambient condition. Support vector regression (SVR) ensemble models with gravitational search algorithm (GSA) hyper-parameter optimization are hereby proposed for modeling the magnetic ordering temperature of manganite using ionic radii and dopant concentrations as descriptors. Ensemble model (EMS) developed using average of the outputs of five different SVR base estimators performs better than the ensemble model (EMM) developed using individual outputs without averaging with performance improvement of 25.4%. Similarly, EMS performs better than the conventional SVR-based model as well as GSA-optimized SVR-based model (GSVR). The proposed ensemble models also outperform other existing models in the literature. The results of this research work will not only serve to circumvent the experimental challenges of magnetic ordering temperature measurement but also further promotes environmental-friendly system of refrigeration.


Magnetic refrigeration Magnetic ordering temperature Support vector regression Manganite-based materials Ensemble model Gravitational search algorithm 



  1. 1.
    T.O. Owolabi, L.E. Oloore, K.O. Akande, S.O. Olatunji, Modeling of magnetic cooling power of manganite-based materials using computational intelligence approach. Neural Comput. Appl. (2017). Google Scholar
  2. 2.
    R. Ben Hassine, W. Cherif, J.A. Alonso, F. Mompean, M.T. Fernández-Díaz, F. Elhalouani, Enhanced relative cooling power of Fe-doped La0.67Sr0.22Ba0.11Mn1−xFexO3 perovskites: Structural, magnetic and magnetocaloric properties. J. Alloys Compd. 649(2015), 996–1006 (2015)CrossRefGoogle Scholar
  3. 3.
    M.-H. Phan, H.-X. Peng, S.-C. Yu, N. Duc Tho, N. Chau, Large magnetic entropy change in Cu-doped manganites. J. Magn. Magn. Mater. 285(1–2), 199–203 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    S.R. Lee, M.S. Anwar, F. Ahmed, B.H. Koo, Effect of sintering temperature on structure, magnetic and magnetocaloric properties of La0.6Ca0.4MnO3 manganite. Trans. Nonferr. Met. Soc. China 24, s141–s145 (2014)CrossRefGoogle Scholar
  5. 5.
    R. Skini, A. Omri, M. Khlifi, E. Dhahri, E.K. Hlil, Large magnetocaloric effect in lanthanum-deficiency manganites La0.8−x xCa0.2MnO3 (0.00 ≤ x ≤ 0.20) with a first-order magnetic phase transition. J. Magn. Magn. Mater. 364, 5–10 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    T. Prabhakaran, R.V. Mangalaraja, J.C. Denardin, The structural, magnetic and magnetic entropy changes on CoFe2O4/CoFe2 composites for magnetic refrigeration application. J. Magn. Magn. Mater. 444, 297–306 (2017)ADSCrossRefGoogle Scholar
  7. 7.
    A. Belkahla, K. Cherif, J. Dhahri, E.K. Hlil, Large magnetic entropy change and magnetic field dependence of compound. J. Alloys Compd. 715, 266–274 (2017)CrossRefGoogle Scholar
  8. 8.
    R. Hamdi, A. Tozri, M. Smari, E. Dhahri, L. Bessais, Structural, magnetic, magnetocaloric and electrical studies of Dy0.5(Sr1−xCax0.5MnO3) manganites. J. Magn. Magn. Mater. 444, 270–279 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    M.H. Phan, S.C. Yu, Review of the magnetocaloric effect in manganite materials. J. Magn. Magn. Mater. 308(2), 325–340 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    S. Tian, M. Phan, S. Yu, N. Hwi, Magnetocaloric effect in a La0.7Ca0.3MnO3 single crystal. Physica B 327(2003), 221–224 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    K. El Maalam et al., Composite (La0.45Nd0.25)Sr0.3MnO3/5CuO materials for magnetic refrigeration applications. J. Magn. Magn. Mater. 449, 25–32 (2017)CrossRefGoogle Scholar
  12. 12.
    J. Khelifi, E. Dhahri, E.K. Hlil, Enhancement of magnetocaloric effect in (La0.67Ca0.33MnO3)/(La0.7Ba0.3MnO3) composite. J. Low Temp. Phys. 190(5–6), 315–327 (2018)ADSCrossRefGoogle Scholar
  13. 13.
    A.G. Gamzatov, T.A. Gadzhimuradov, Low-temperature intergranular spin transport in La0.5Ca0.4Li0.1MnO3 manganite under high magnetic field (1T ≤ H ≤ 14T). J. Low Temp. Phys. 185(5–6), 590–596 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    B. Zhang, X.-Q. Zheng, T.-Y. Zhao, F.-X. Hu, J.-R. Sun, B.-G. Shen, Machine learning technique for prediction of magnetocaloric effect in La(Fe, Si/Al) 13-based materials. Chin. Phys. B 27(6), 067503 (2018)ADSCrossRefGoogle Scholar
  15. 15.
    R. Thaljaoui, M. Pękała, J.-F. Fagnard, P. Vanderbemden, Effect of Ag substitution on structural, magnetic and magnetocaloric properties of Pr0.6Sr0.4−x AgxMnO3 manganites. J. Rare Earths 35(9), 875–882 (2017)CrossRefGoogle Scholar
  16. 16.
    H. Ben Khlifa et al., Critical behaviour and filed dependence of magnetic entropy change in K-doped manganites Pr0.8Na0.2−xKxMnO3 (x = 0.10 and 0.15). J. Solid State Chem. 257, 9–18 (2018)ADSCrossRefGoogle Scholar
  17. 17.
    T.O. Owolabi, K.O. Akande, S.O. Olatunji, A. Alqahtani, N. Aldhafferi, Incorporation of GSA in SBLLM-based neural network for enhanced estimation of magnetic ordering temperature of manganite. J. Intell. Fuzzy Syst. 33(2), 1225–1233 (2017)CrossRefGoogle Scholar
  18. 18.
    C. Zener, Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with Perovskite structure. Phys. Rev. 82(3), 403–405 (1951)ADSCrossRefGoogle Scholar
  19. 19.
    M.F. Mostafa, A.K. Tammam, T.S. El Dean, S.S. Atallah, Mg doping of LaSrFe manganite: magnetic and electric study. Phys. B Condens. Matter 517(April), 10–18 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    A. Bettaibi et al., Effect of chromium concentration on the structural, magnetic and electrical properties of praseodymium–calcium manganite. J. Alloys Compd. 650, 268–276 (2015)CrossRefGoogle Scholar
  21. 21.
    T.O. Owolabi, K.O. Akande, S.O. Olatunji, A. Alqahtani, N. Aldhafferi, Estimation of Curie temperature of manganite-based materials for magnetic refrigeration application using hybrid gravitational based support vector regression. AIP Adv. 6(10), 105009 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    T.O. Owolabi, K.O. Akande, S.O. Olatunji, A. Alqahtani, N. Aldhafferi, Modeling of Curie temperature of manganite for magnetic refrigeration application using manual search and hybrid gravitational-based support vector regression. Soft Comput. 6(10), 3023–3032 (2017)Google Scholar
  23. 23.
    R. Nagarajan, M. Upreti, An ensemble predictive modeling framework for breast cancer classification. Methods 131, 128–134 (2017)CrossRefGoogle Scholar
  24. 24.
    E. Volna, M. Kotyrba, Enhanced ensemble-based classifier with boosting for pattern recognition. Appl. Math. Comput. 310, 1–14 (2017)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Z. Wang, Y. Wang, R.S. Srinivasan, A novel ensemble learning approach to support building energy use prediction. Energy Build. 159, 109–122 (2018)CrossRefGoogle Scholar
  26. 26.
    T.O. Owolabi, K.O. Akande, S.O. Olatunji, N. Aldhafferi, Ensemble-based support vector regression with gravitational search algorithm optimization for estimating magnetic relative cooling power of manganite refrigerant in magnetic refrigeration application. J. Supercond. (2018)Google Scholar
  27. 27.
    Y. Kaneda, H. Mineno, Sliding window-based support vector regression for predicting micrometeorological data. Expert Syst. Appl. 59, 217–225 (2016)CrossRefGoogle Scholar
  28. 28.
    F. Anifowose, J. Labadin, A. Abdulraheem, Improving the prediction of petroleum reservoir characterization with a stacked generalization ensemble model of support vector machines. Appl. Soft Comput. J. 26, 483–496 (2015)CrossRefGoogle Scholar
  29. 29.
    J.-S. Chou, A.-D. Pham, Enhanced artificial intelligence for ensemble approach to predicting high performance concrete compressive strength. Constr. Build. Mater. 49, 554–563 (2013)CrossRefGoogle Scholar
  30. 30.
    A. Jurek, J. Hong, Y. Chi, W. Liu, A novel ensemble learning approach to unsupervised record linkage. Inf. Syst. 71, 40–54 (2017)CrossRefGoogle Scholar
  31. 31.
    L. Wang, Z. Huang, Y. Gong, C. Pan, Ensemble based deep networks for image super-resolution. Pattern Recognit. 68, 191–198 (2017)CrossRefGoogle Scholar
  32. 32.
    V.N. Vapnik, The Nature of Statistical Learning Theory (Springer, New York, 1995)CrossRefzbMATHGoogle Scholar
  33. 33.
    A.A. Adewunmi, S. Ismail, T.O. Owolabi, A.S. Sultan, S.O. Olatunji, Z. Ahmad, Modeling the thermal behavior of coal fly ash based polymer gel system for water reduction in oil and gas wells. J. Pet. Sci. Eng. 157, 430–440 (2017)CrossRefGoogle Scholar
  34. 34.
    T.O. Owolabi, K.O. Akande, S.O. Olatunji, Application of computational intelligence technique for estimating superconducting transition temperature of YBCO superconductors. Appl. Soft Comput. 43(2016), 143–149 (2016)CrossRefGoogle Scholar
  35. 35.
    T.O. Owolabi, K.O. Akande, S.O. Olatunji, Computational intelligence method of estimating solid–liquid interfacial energy of materials at their melting temperatures. J. Intell. Fuzzy Syst. 31, 519–527 (2016)CrossRefGoogle Scholar
  36. 36.
    T.O. Owolabi, K.O. Akande, S.O. Olatunji, Estimation of average surface energies of transition metal nitrides using computational intelligence technique. Soft Comput. 20, 6175–6182 (2016)Google Scholar
  37. 37.
    K.O. Akande, T.O. Owolabi, S.O. Olatunji, A. AbdulRaheem, A hybrid particle swarm optimization and support vector regression model for modelling permeability prediction of hydrocarbon reservoir. J. Pet. Sci. Eng. 150, 43–53 (2017)CrossRefGoogle Scholar
  38. 38.
    T.O. Owolabi, M. Faiz, S.O. Olatunji, I.K. Popoola, Computational intelligence method of determining the energy band gap of doped ZnO semiconductor. Mater. Des. 101, 277–284 (2016)CrossRefGoogle Scholar
  39. 39.
    K.O. Akande, T.O. Owolabi, S.O. Olatunji, A. Abdulraheem, A novel homogenous hybridization scheme for performance improvement of support vector machines regression in reservoir characterization. Appl. Comput. Intell. Soft Comput. 2016, 1–10 (2016)CrossRefGoogle Scholar
  40. 40.
    E. Rashedi, H. Nezamabadi-pour, S. Saryazdi, GSA: a gravitational search algorithm. Inf. Sci. 179(13), 2232–2248 (2009)CrossRefzbMATHGoogle Scholar
  41. 41.
    N. Pholdee, S. Bureerat, A.R. Yildiz, Hybrid real-code population-based incremental learning and differential evolution for many-objective optimisation of an automotive floor-frame. Int. J. Veh. Des. 73(1), 20–53 (2017)CrossRefGoogle Scholar
  42. 42.
    A.R. Yildiz, Cuckoo search algorithm for the selection of optimal machining parameters in milling operations. Int. J. Adv. Manuf. Technol. 64(1–4), 55–61 (2012)Google Scholar
  43. 43.
    A.R. Yıldız, A new design optimization framework based on immune algorithm and Taguchi’s method. Comput. Ind. 60(8), 613–620 (2009)CrossRefGoogle Scholar
  44. 44.
    A.R. Yildiz, Comparison of evolutionary-based optimization algorithms for structural design optimization. Eng. Appl. Artif. Intell. 26(1), 327–333 (2013)CrossRefGoogle Scholar
  45. 45.
    B.S. Yıldız, Natural frequency optimization of vehicle components using the interior search algorithm. Mater. Test. 59(5), 456–458 (2017)CrossRefGoogle Scholar
  46. 46.
    A.R. Yildiz, Optimization of cutting parameters in multi-pass turning using artificial bee colony-based approach. Inf. Sci. 220, 399–407 (2013)MathSciNetCrossRefGoogle Scholar
  47. 47.
    J. Wen, H. Yang, X. Tong, K. Li, S. Wang, Y. Li, Optimization investigation on configuration parameters of serrated fin in plate-fin heat exchanger using genetic algorithm. Int. J. Therm. Sci. 101(2016), 116–125 (2016)CrossRefGoogle Scholar
  48. 48.
    B.S. Yıldız, A.R. Yıldız, Moth-flame optimization algorithm to determine optimal machining parameters in manufacturing processes. Mater. Test. 59(5), 425–429 (2017)CrossRefGoogle Scholar
  49. 49.
    A.R. Yildiz, K.N. Solanki, Multi-objective optimization of vehicle crashworthiness using a new particle swarm based approach. Int. J. Adv. Manuf. Technol. 59(1–4), 367–376 (2011)Google Scholar
  50. 50.
    A. Rıza Yıldız, A novel hybrid immune algorithm for global optimization in design and manufacturing. Robot. Comput. Integr. Manuf. 25(2), 261–270 (2009)CrossRefGoogle Scholar
  51. 51.
    A.R. Yıldız, An effective hybrid immune-hill climbing optimization approach for solving design and manufacturing optimization problems in industry. J. Mater. Process. Technol. 209(6), 2773–2780 (2009)CrossRefGoogle Scholar
  52. 52.
    A.R. Yildiz, A new hybrid particle swarm optimization approach for structural design optimization in the automotive industry. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 226(10), 1340–1351 (2012)CrossRefGoogle Scholar
  53. 53.
    A.R. Yildiz, A new hybrid differential evolution algorithm for the selection of optimal machining parameters in milling operations. Appl. Soft Comput. 13(3), 1561–1566 (2013)CrossRefGoogle Scholar
  54. 54.
    A.R. Yildiz, Hybrid Taguchi-differential evolution algorithm for optimization of multi-pass turning operations. Appl. Soft Comput. 13(3), 1433–1439 (2013)CrossRefGoogle Scholar
  55. 55.
    A.R. Yildiz, A new hybrid artificial bee colony algorithm for robust optimal design and manufacturing. Appl. Soft Comput. 13(5), 2906–2912 (2013)CrossRefGoogle Scholar
  56. 56.
    T.O. Owolabi, K.O. Akande, S.O. Olatunji, A. Alqahtani, N. Aldhafferi, Incorporation of GSA in SBLLM-based neural network for enhanced estimation of magnetic ordering temperature of manganite. J. Intell. Fuzzy Syst. 33, 1225–1233 (2017)CrossRefGoogle Scholar
  57. 57.
    H. Drucker, C.J.C. Burges, L. Kaufman, A.J. Smola, V.N. Vapnik, Support vector regression machines. Adv. Neural Inf. Process. Syst. 9, 281–287 (1996)Google Scholar
  58. 58.
    N.M. Sabri, M. Puteh, M.R. Mahmood, A review of gravitational search algorithm. Int. J. Adv. Soft Comput. Appl. 5(3), 1–39 (2013)Google Scholar
  59. 59.
    A. Selmi, R. M’nassri, N.C. Boudjada, A. Cheikhrouhou, The effect of Co doping on the magnetic and magnetocaloric properties. Ceram. Int. 41(6), 7723–7728 (2015)CrossRefGoogle Scholar
  60. 60.
    A. Selmi, R. M’nassri, W. Cheikhrouhou-Koubaa, N. Chniba Boudjada, A. Cheikhrouhou, Influence of transition metal doping (Fe, Co, Ni and Cr) on magnetic and magnetocaloric properties of Pr0.7Ca0.3MnO3 manganites. Ceram. Int. 41(8), 10177–10184 (2015)CrossRefGoogle Scholar
  61. 61.
    R. Cherif, E.K. Hlil, M. Ellouze, F. Elhalouani, S. Obbade, Magnetic and magnetocaloric properties of La0.6Pr0.1Sr0.3Mn1−xFexO3 (0 ≤ x≤0.3) manganites. J. Solid State Chem. 215, 271–276 (2014)ADSCrossRefGoogle Scholar
  62. 62.
    A. Mleiki, S. Othmani, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, E.K. Hlil, Effect of praseodymium doping on the structural, magnetic and magnetocaloric properties of Sm0.55−xPrxSr0.45MnO3 manganites. J. Alloys Compd. 645, 559–565 (2015)CrossRefGoogle Scholar
  63. 63.
    S.E. Kossi, S. Ghodhbane, J. Dhahri, E.K. Hlil, The impact of disorder on magnetocaloric properties in Ti-doped manganites of La0.7Sr0.25Na0.05Mn(1−x)TixO3 (0 ≤ x ≤ 0.2). J. Magn. Magn. Mater. 395, 134–142 (2015)ADSCrossRefGoogle Scholar
  64. 64.
    E. Oumezzine, S. Hcini, E.-K. Hlil, E. Dhahri, M. Oumezzine, Effect of Ni-doping on structural, magnetic and magnetocaloric properties of La0.6Pr0.1Ba0.3Mn1−xNixO3 nanocrystalline manganites synthesized by Pechini sol–gel method. J. Alloys Compd. 615, 553–560 (2014)CrossRefGoogle Scholar
  65. 65.
    S. Mahjoub, M. Baazaoui, R. Mnassri, H. Rahmouni, N.C. Boudjada, M. Oumezzine, Effect of iron substitution on the structural, magnetic and magnetocaloric properties of Pr0.6Ca0.1Sr0.3Mn1−xFexO3 (0≤x≤0.075) manganites. J. Alloys Compd. 608, 191–196 (2014)CrossRefGoogle Scholar
  66. 66.
    S. Ghodhbane, E. Tka, J. Dhahri, E.K. Hlil, A large magnetic entropy change near room temperature in La0.8Ba0.1Ca0.1Mn0.97Fe0.03O3 perovskite. J. Alloys Compd. 600, 172–177 (2014)CrossRefGoogle Scholar
  67. 67.
    Z. Wang, J. Jiang, Magnetic entropy change in perovskite manganites La0.7A0.3MnO3 transition. Solid State Sci. 18, 36–41 (2013)ADSCrossRefGoogle Scholar
  68. 68.
    T.O. Owolabi, M.A. Gondal, A hybrid intelligent scheme for estimating band gap of doped titanium dioxide semiconductor using crystal lattice distortion. Comput. Mater. Sci. 137, 249–256 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Taoreed O. Owolabi
    • 1
    Email author
  • Kabiru O. Akande
    • 2
  • Sunday O. Olatunji
    • 3
  • Nahier Aldhafferi
    • 4
  • Abdullah Alqahtani
    • 4
  1. 1.Physics and Electronics DepartmentAdekunle Ajasin UniversityAkungba AkokoNigeria
  2. 2.Institute for Digital Communications, School of EngineeringUniversity of EdinburghEdinburghUK
  3. 3.Computer Science Department, College of Computer Science and Information TechnologyImam Abdulrahman Bin Faisal UniversityDammamSaudi Arabia
  4. 4.Computer Information System Department, College of Computer Science and Information TechnologyImam Abdulrahman Bin Faisal UniversityDammamSaudi Arabia

Personalised recommendations