Thermopower Quantum Oscillations in the Charge Density Wave State of the Organic Conductor \(\upalpha \)-(BEDT-TTF)\(_{2}\text {KHg}(\text {SCN})_{4}\)

  • Danica KrstovskaEmail author
  • Eun Sang Choi
  • Eden Steven


We report on experimental studies of magnetic quantum oscillations of the interlayer thermopower in the charge density wave state of the multiband organic conductor \(\upalpha \)-(BEDT-TTF)\(_{2}\text {KHg}(\text {SCN})_4\). The magnetic field is along the direction perpendicular to the conducting layers. The interlayer thermopower or Seebeck effect has been measured in magnetic fields of up to 32 T and temperatures down to 0.5 K. The thermopower magnetic field dependence was measured at two temperatures 0.5 K and 4 K. Quantum oscillations observed in thermopower, at fields above 8 T and temperature 4 K, originate only from the \(\alpha \) orbit, whereas at 0.5 K the energy spectrum consists of Landau levels of not only the \(\alpha \) orbit but also the second harmonic as obtained from the fast Fourier transform analysis. In addition to the \(\alpha \) and 2\(\alpha \) frequencies, the oscillation spectrum reveals existence of a low-frequency peak at \(F_{\lambda } = 180\) T which was previously observed in both magnetoresistance and magnetization. The behavior of thermopower magnetic quantum oscillations amplitude is analyzed using the Lifshitz–Kosevich formula, and the influence of different damping factors such as the temperature, spin splitting, Dingle and magnetic breakdown factors is studied. In addition, we analyze how the second harmonic of fundamental \(\alpha \) frequency observed at low temperatures in the \(\text {CDW}_0\) state at field perpendicular to the conducting layers affects the thermopower quantum oscillations amplitude. At low temperature, we find that on entering the low-field state, the scattering rate is observed to increase dramatically. We also observe an apparent increase in the effective mass of first harmonic from \(m_{\alpha }^*=1.7 m_{\text{e}}\), in the low-field state to \(m_{\alpha }^*=3.3 m_{\text{e}}\), in the high-field state. For the second harmonic, a constant effective mass of \(m_{2\alpha }^*=3.2 m_{\text{e}}\) is estimated above and below the kink field.


Organic conductors \(\upalpha \)-(BEDT-TTF)\(_{2}\text {KHg}(\text {SCN})_{4}\) Interlayer thermopower Magnetic quantum oscillations Impurity scattering Magnetic breakdown Charge density wave 



The work was performed at the National High Magnetic Field Laboratory, supported by NSF DMR-0654118, by the State of Florida, and by the DOE.


  1. 1.
    M.V. Kartsovnik, The Physics of Organic Superconductors and Conductors (Springer, Berlin, 2008)Google Scholar
  2. 2.
    P. Foury-Leylekian, J.P. Pouget, Y.J. Lee, R.M. Nieminen, P. Ordejón, E. Canadell, Phys. Rev. B 82, 134116 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    H. Mori, S. Tanaka, M. Oshima, G. Saito, T. Mori, Y. Maruyama, H. Inokuchi, Bull. Chem. Soc. Jpn. 63, 2183 (1990)CrossRefGoogle Scholar
  4. 4.
    R. Rousseau, M.L. Doublet, E. Canadell, R.P. Shibaeva, S.S. Khasanov, L.P. Rozenberg, N.D. Kushch, E.B. Yagubskii, J. Phys. I Fr. 6, 1527 (1996)CrossRefGoogle Scholar
  5. 5.
    M.V. Kartsovnik, A.E. Kovalev, N.D. Kushch, Phys. I Fr. 3, 1187 (1993)CrossRefGoogle Scholar
  6. 6.
    A.E. Kovalev, M.V. Kartsovnik, R.P. Shibaeva, L.P. Rozenberg, I.F. Schegolev, N.D. Kushch, Solid State Commun. 89, 575 (1994)ADSCrossRefGoogle Scholar
  7. 7.
    T. Sasaki, N. Toyota, Phys. Rev. B 49, 10120 (1994)ADSCrossRefGoogle Scholar
  8. 8.
    J. Caulfield, S.J. Blundell, M.S.L. du Croo, P.T.J. de Jongh, J. Hendriks, M. Singleton, F.L. Doporto, A. Pratt, J.A.A.J. House, W. Perenboom, M. Hayes, M. Kurmoo, P. Day, Phys. Rev. B 51, 8325 (1995)ADSCrossRefGoogle Scholar
  9. 9.
    J.S. Qualls, L. Balicas, J.S. Brooks, N. Harrison, L.K. Montgomery, M. Tokumoto, Phys. Rev. B 62, 10008 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    C. Proust, A. Audouard, A. Kovalev, D. Vignolles, M. Kartsovnik, L. Brossard, N. Kushch, Phys. Rev. B 62, 2388 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    D. Krstovska, E. Steven, E.S. Choi, J.S. Brooks, Low Temp. Phys. 37, 950 (2011)CrossRefGoogle Scholar
  12. 12.
    D. Krstovska, E.S. Choi, E. Steven, J.S. Brooks, J. Phys. Condens. Matter 24, 265502 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    N. Harrison, R. Bogaerts, P.H.P. Reinders, J. Singleton, S.J. Blundell, F. Herlach, Phys. Rev. B 54, 9977 (1996)ADSCrossRefGoogle Scholar
  14. 14.
    J.S. Brooks, S.J. Klepper, C.C. Agosta, M. Tokumoto, N. Kinoshita, Y. Tanaka, S. Uji, H. Aoki, G.J. Athas, X. Chen, H. Anzai, Synth. Met. 56, 1791 (1993)CrossRefGoogle Scholar
  15. 15.
    M. Tokumoto, A.G. Swanson, J.S. Brooks, C.C. Agosta, S.T. Hannahs, N. Kinoshita, H. Anzai, J.R. Anderson, J. Phys. Soc. Jpn. 59, 2324 (1990)ADSCrossRefGoogle Scholar
  16. 16.
    M.V. Kartsovnik, A.E. Kovaleva, V.N. Laukhin, S.I. Pesotskii, N.D. Kushch, JETP Lett. 55, 339 (1992)ADSGoogle Scholar
  17. 17.
    A. House, C.J. Hawoth, J.M. Caulfield, S. Blundell, M.M. Honold, J. Singleton, W. Hayes, S.M. Hayden, P. Meeson, M. Springford, M. Kurmoo, P. Day, J. Phys. Condens. Matter 8, 10361 (1996)ADSCrossRefGoogle Scholar
  18. 18.
    N. Harrison, C.H. Mielke, D.G. Rickel, J. Wosniza, J.S. Qualls, J.S. Brooks, E. Balthes, D. Shweitzer, I. Heinen, W. Strunz, Phys. Rev. B 98, 10248 (1998)ADSCrossRefGoogle Scholar
  19. 19.
    D. Shoenberg, Magnetic Oscillations in Metals (Cambridge University Press, Cambridge, 1984)CrossRefGoogle Scholar
  20. 20.
    T. Osada, R. Yagi, A. Kawasumi, S. Kagoshima, N. Miura, M. Oshima, G. Saito, Phys. Rev. B 41, 5428 (1990)ADSCrossRefGoogle Scholar
  21. 21.
    T. Sasaki, A.G. Lebed, T. Fukase, N. Toyota, Phys. Rev. B 54, 12969 (1996)ADSCrossRefGoogle Scholar
  22. 22.
    N. Harrison, L. Balicas, J.S. Brooks, M. Tokumoto, Phys. Rev. B 62, 14212 (2000)ADSCrossRefGoogle Scholar
  23. 23.
    N. Harrison, A. House, I. Deckers, J. Caulfield, J. Singleton, F. Herlach, W. Hayes, M. Kurmoo, P. Day, Phys. Rev. B 52, 5584 (1995)ADSCrossRefGoogle Scholar
  24. 24.
    P. Christ, W. Biberacher, H. Müuller, K. Andres, E. Steep, A.G.M. Jansen, Physica B 204, 153 (1995)ADSCrossRefGoogle Scholar
  25. 25.
    S. Uji, J.S. Brooks, M. Chaparala, L. Seger, T. Szabo, M. Tokumoto, N. Kinoshita, T. Kinoshita, Y. Tanaka, H. Anzai, Solid State Commun. 100, 825 (1996)ADSCrossRefGoogle Scholar
  26. 26.
    T. Sasaki, N. Toyota, Phys. Rev. B 48, 11457 (1993)ADSCrossRefGoogle Scholar
  27. 27.
    A.A. Abrikosov, Fundamentals of the Theory of Metals, 2nd edn. (North-Holand, Amsterdam, 1988)Google Scholar
  28. 28.
    M.V. Kartsovnik, V.N. Zverev, D. Andres, W. Biberacher, T. Helm, P.D. Grigoriev, R. Ramazashvili, N.D. Kushch, H. Müller, Low Temp. Phys. 40, 377 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    N. Harrison, N. Biskup, J.S. Brooks, L. Balicas, M. Tokumoto, Phys. Rev. B 63, 195102 (2001)ADSCrossRefGoogle Scholar
  30. 30.
    T. Sasaki, W. Biberacher, T. Fukase, Physica B 246–247, 303 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Natural Sciences and MathematicsSs. Cyril and Methodius UniversitySkopjeMacedonia
  2. 2.National High Magnetic Field LaboratoryFlorida State UniversityTallahasseeUSA
  3. 3.Emmerich Education CenterJakartaIndonesia

Personalised recommendations