Advertisement

Superconductivity in Model Cuprate as an \(S = 1\) Pseudomagnon Condensation

  • E. V. VasinovichEmail author
  • A. S. Moskvin
  • Yu. D. Panov
Article
  • 5 Downloads

Abstract

We make use of the \(S = 1\) pseudospin formalism to describe the charge degree of freedom in a model high-\(T_c\) cuprate with the on-site Hilbert space reduced to the three effective valence centers, nominally \(\hbox {Cu}^{1+,\,2+,\,3+}\). Starting with a parent cuprate as an analog of the quantum paramagnet ground state and using the Schwinger boson technique, we found the pseudospin spectrum and conditions for the pseudomagnon condensation with phase transition to a superconducting state.

Keywords

Phase transition Condensation HTSC Cuprates Spin-1 Quantum paramagnet 

Notes

Acknowledgements

The research was supported by the Government of the Russian Federation, Program 02.A03.21.0006, by the Ministry of Education and Science of the Russian Federation, Projects Nos. 2277 and 5719, and by the Competitiveness Enhancement Program—CEP 3.1.1.2-18.

References

  1. 1.
    C.J. Hamer, Phys. Rev. B 81, 214424 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    A.V. Sizanov, A.V. Syromyatnikov, Phys. Rev. B 84, 054445 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    M. Guimarães, B.V. Costa, A.S.T. Pires, A. Souza, J. Magn. Magn. Mater. 32, 103 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    G.M.A. Sousa, A.S.T. Pires, J. Magn. Magn. Mater. 354, 376 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    A.R. Moura, J. Magn. Magn. Mater. 369, 62 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    J.L. Manson, A.G. Baldwin, B.L. Scott, J. Bendix, R.E. Del Sesto, P.A. Goddard, Y. Kohama, H.E. Tran, S. Ghannadzadeh, J. Singleton, T. Lancaster, J.S. Moller, S.J. Blundell, F.L. Pratt, V.S. Zapf, J. Kang, C. Lee, M.-H. Whangbo, C. Baines, Inorg. Chem. 51, 7520 (2012)CrossRefGoogle Scholar
  7. 7.
    K. Wierschem, P. Sengupta, Mod. Phys. Lett. B 28, 1430017 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    A. Paduan-Filho, X. Gratens, N.F. Oliveira, Phys. Rev. B 69, 020405 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    S. Diehl, M. Baranov, A.J. Daley, P. Zoller, Phys. Rev. Lett. 104, 165301 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    A.S. Moskvin, Low Temp. Phys. 33, 234 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    A.S. Moskvin, Phys. Rev. B 84, 075116 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    A.S. Moskvin, J. Phys. Condens. Matter 25, 085601 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    A.S. Moskvin, J. Exp. Theor. Phys. 121, 477 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    E.V. Vasinovich, A.S. Moskvin, Y.D. Panov, Phys. Solid State 60, 2145 (2018)ADSCrossRefGoogle Scholar
  15. 15.
    G. Misguich, C. Lhuillier, in Frustrated Spin Systems, ed. by H.T. Diep (World Scientific, Singapore, 2004), pp. 229–307Google Scholar
  16. 16.
    E. Dagotto, A. Moreo, Phys. Rev. Lett. 63, 2148 (1989)ADSCrossRefGoogle Scholar
  17. 17.
    M.E. Zhitomirsky, K. Ueda, Phys. Rev. B 54, 9007 (1996)ADSCrossRefGoogle Scholar
  18. 18.
    J. Richter, J. Schulenburg, Eur. Phys. J. B 73, 117 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    R.R.P. Singh, W. Zheng, J. Oitmaa, O.P. Sushkov, C.J. Hamer, Phys. Rev. Lett. 91, 017201 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    O.P. Sushkov, J. Oitmaa, Z. Weihong, Phys. Rev. B 63, 104420 (2001)ADSCrossRefGoogle Scholar
  21. 21.
    N. Read, S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991)ADSCrossRefGoogle Scholar
  22. 22.
    J. Reuther, P. Wölfle, Phys. Rev. B 81, 144410 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    L. Siurakshina, D. Ihle, R. Hayn, Phys. Rev. B 64, 104406 (2001)ADSCrossRefGoogle Scholar
  24. 24.
    V. Murg, F. Verstraete, J.I. Cirac, Phys. Rev. B 79, 195119 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    D.P. Arovas, A. Auerbach, Phys. Rev. B 38, 316 (1988)ADSCrossRefGoogle Scholar
  26. 26.
    H.T. Wang, Y. Wang, Phys. Rev. B 71, 104429 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    Z. Zhang, Phys. Rev. B 87, 174405 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    A.S.T. Pires, Physica A 437, 198 (2015)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    A.S.T. Pires, Physica A 459, 100 (2016)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    T.H. Pimenta, A.S.T. Pires, J. Magn. Magn. Mater. 465, 58 (2018)ADSCrossRefGoogle Scholar
  31. 31.
    N. Papanicolaou, Nucl. Phys. B 305, 367 (1988)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    A. Imambekov, M. Lukin, E. Demler, Phys. Rev. A 68, 063602 (2003)ADSCrossRefGoogle Scholar
  33. 33.
    A. Läuchli, G. Schmid, S. Trebst, Phys. Rev. B 74, 144426 (2006)ADSCrossRefGoogle Scholar
  34. 34.
    H. Tsunetsugu, M. Arikawa, J. Phys. Soc. Jpn. 75, 083701 (2006)ADSCrossRefGoogle Scholar
  35. 35.
    A. Läuchli, F. Mila, K. Penc, Phys. Rev. Lett. 97, 087205 (2006)ADSCrossRefGoogle Scholar
  36. 36.
    H.-F. Lü, Z.-F. Xu, Phys. Lett. A 360, 169 (2006)ADSCrossRefGoogle Scholar
  37. 37.
    Y.D. Panov, A.S. Moskvin, V.V. Konev, E.V. Vasinovich, V.A. Ulitko, Acta Phys. Pol. A 133, 426 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Ural Federal UniversityEkaterinburgRussia

Personalised recommendations