Advertisement

Self-Diffusion in a Spatially Modulated System of Electrons on Helium

  • K. Moskovtsev
  • M. I. DykmanEmail author
Article
  • 8 Downloads

Abstract

We present results of molecular dynamics simulations of the electron system on the surface of liquid helium. The simulations are done for 1600 electrons with periodic boundary conditions. Electron scattering by capillary waves and phonons in helium is explicitly taken into account. We find that the self-diffusion coefficient superlinearly decreases with decreasing temperature. In the free-electron system, it turns to zero essentially discontinuously, which we associate with the liquid-to-solid transition. In contrast, when the system is placed in the fully commensurate one-dimensional potential, the freezing of the diffusion occurs smoothly. We relate this change to the fact that, as we show, a Wigner crystal in such a potential is stable, in contrast to systems with a short-range inter-particle coupling. We find that the freezing temperature nonmonotonically depends on the commensurability parameter. We also find incommensurability solitons in the solid phase. The results reveal peculiar features of the dynamics of a strongly correlated system with long-range coupling placed into a periodic potential.

Keywords

Electrons on helium Commensurate–incommensurate transitions Wigner crystallization Self-diffusion 

Notes

Acknowledgements

We are grateful for the discussion of the results of this paper to the participants of the International Workshop on Electrons and Ions in Quantum Fluids and Solids (Japan 2018) and the organizer of this workshop K. Kono. This research was supported in part by the NSF-DMR Grant 1708331.

References

  1. 1.
    E. Andrei (ed.), Two-Dimensional Electron Systems on Helium and Other Cryogenic Surfaces (Kluwer Academic, Dordrecht, 1997)Google Scholar
  2. 2.
    Y. Monarkha, K. Kono, Two-Dimensional Coulomb Liquids and Solids (Springer, Berlin, 2004)CrossRefGoogle Scholar
  3. 3.
    L. Menna, S. Yucel, E.Y. Andrei, Phys. Rev. Lett. 70, 2154 (1993)ADSCrossRefGoogle Scholar
  4. 4.
    M.I. Dykman, M.J. Lea, P. Fozooni, J. Frost, Phys. Rev. Lett. 70, 3975 (1993)ADSCrossRefGoogle Scholar
  5. 5.
    M.J. Lea, P. Fozooni, A. Kristensen, P.J. Richardson, K. Djerfi, M.I. Dykman, C. Fang-Yen, A. Blackburn, Phys. Rev. B 55, 16280 (1997).  https://doi.org/10.1103/PhysRevB.55.16280 ADSCrossRefGoogle Scholar
  6. 6.
    M.I. Dykman, T. Sharpee, P.M. Platzman, Phys. Rev. Lett. 86, 2408 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    D. Konstantinov, M.I. Dykman, M.J. Lea, Y. Monarkha, K. Kono, Phys. Rev. Lett. 103, 096801 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    D. Konstantinov, Y. Monarkha, K. Kono, Phys. Rev. Lett. 111, 266802 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    A.D. Chepelianskii, M. Watanabe, K. Nasyedkin, K. Kono, D. Konstantinov, Nat. Commun. 6, 7210 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    H. Totsuji, Phys. Rev. A 17, 399 (1978)ADSCrossRefGoogle Scholar
  11. 11.
    R.C. Gann, S. Chakravarty, G.V. Chester, Phys. Rev. B 20, 326 (1979)ADSCrossRefGoogle Scholar
  12. 12.
    J.P. Hansen, D. Levesque, J.J. Weis, Phys. Rev. Lett. 43, 979 (1979)ADSCrossRefGoogle Scholar
  13. 13.
    R.H. Morf, Phys. Rev. Lett. 43, 931 (1979).  https://doi.org/10.1103/PhysRevLett.43.931 ADSCrossRefGoogle Scholar
  14. 14.
    R.K. Kalia, P. Vashishta, S.W. de Leeuw, Phys. Rev. B 23, 4794 (1981)ADSCrossRefGoogle Scholar
  15. 15.
    R.K. Kalia, P. Vashishta, S.D. Mahanti, J.J. Quinn, J. Phys. C: Solid State Phys. 16, L491 (1983)ADSCrossRefGoogle Scholar
  16. 16.
    K.J. Strandburg, Rev. Mod. Phys. 60, 161 (1988)ADSCrossRefGoogle Scholar
  17. 17.
    C. FangYen, M.I. Dykman, M.J. Lea, Phys. Rev. B 55, 16272 (1997)ADSCrossRefGoogle Scholar
  18. 18.
    S. Muto, H. Aoki, Phys. Rev. B 59, 14911 (1999)ADSCrossRefGoogle Scholar
  19. 19.
    G. Piacente, F.M. Peeters, Phys. Rev. B 72, 205208 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    B.K. Clark, M. Casula, D.M. Ceperley, Phys. Rev. Lett. 103, 055701 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    P.F. Damasceno, C.J. DaSilva, J.P. Rino, L. Cândido, J. Low Temp. Phys. 160, 58 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    D.G. Rees, H. Totsuji, K. Kono, Phys. Rev. Lett. 108, 176801 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    M. Mazars, EPL 110, 26003 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    S. Khrapak, B. Klumov, L. Couedel, J. Phys. Commun. 2, 045013 (2018)CrossRefGoogle Scholar
  25. 25.
    P. Bak, Rep. Prog. Phys. 45, 587 (1982)ADSCrossRefGoogle Scholar
  26. 26.
    V.L. Pokrovsky, A.L. Talapov, Zh Eksp, Teor. Fiz. 78, 269 (1980)Google Scholar
  27. 27.
    Q.-H. Wei, C. Bechinger, D. Rudhardt, P. Leiderer, Phys. Rev. Lett. 81, 2606 (1998)ADSCrossRefGoogle Scholar
  28. 28.
    L. Radzihovsky, E. Frey, D. Nelson, Phys. Rev. E 63, 031503 (2001)ADSCrossRefGoogle Scholar
  29. 29.
    M.I. Dykman, P. Platzman, P. Seddighrad, Phys. Rev. B 67, 155402 (2003)ADSCrossRefGoogle Scholar
  30. 30.
    D.I. Schuster, A. Fragner, M.I. Dykman, S.A. Lyon, R.J. Schoelkopf, Phys. Rev. Lett. 105, 040503 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    M.I. Dykman, C. FangYen, M.J. Lea, Phys. Rev. B 55, 16249 (1997)ADSCrossRefGoogle Scholar
  32. 32.
    P.G. De Gennes, Physica 25, 825 (1959)ADSCrossRefGoogle Scholar
  33. 33.
    L. Bonsall, A.A. Maradudin, Phys. Rev. B 15, 1959 (1977)ADSCrossRefGoogle Scholar
  34. 34.
    V.L. Pokrovsky, A.L. Talapov, Phys. Rev. Lett. 42, 65 (1979)ADSCrossRefGoogle Scholar
  35. 35.
    A. Chowdhury, B.J. Ackerson, N.A. Clark, Phys. Rev. Lett. 55, 833 (1985)ADSCrossRefGoogle Scholar
  36. 36.
    K. Mangold, P. Leiderer, C. Bechinger, Phys. Rev. Lett. 90, 158302 (2003)ADSCrossRefGoogle Scholar
  37. 37.
    P.J. Lu, D.A. Weitz, Annu. Rev. Condens. Matter Phys. 4, 217 (2013)ADSCrossRefGoogle Scholar
  38. 38.
    B. Li, D. Zhou, Y. Han, Nat. Rev. Mater. 1, 15011 (2016)ADSCrossRefGoogle Scholar
  39. 39.
    M.I. Dykman, Y.G. Rubo, Phys. Rev. Lett. 78, 4813 (1997)ADSCrossRefGoogle Scholar
  40. 40.
    W.F. Vinen, J. Phys. Condens. Matter 11, 9709 (1999)ADSCrossRefGoogle Scholar
  41. 41.
    A. Kristensen, K. Djerfi, P. Fozooni, M.J. Lea, P.J. Richardson, A. Santrich-Badal, A. Blackburn, R.W. van der Heijden, Phys. Rev. Lett. 77, 1350 (1996)ADSCrossRefGoogle Scholar
  42. 42.
    P. Glasson, V. Dotsenko, P. Fozooni, M.J. Lea, W. Bailey, G. Papageorgiou, S.E. Andresen, A. Kristensen, Phys. Rev. Lett. 87, 176802 (2001)ADSCrossRefGoogle Scholar
  43. 43.
    D.G. Rees, N.R. Beysengulov, J.-J. Lin, K. Kono, Phys. Rev. Lett. 116, 206801 (2016)ADSCrossRefGoogle Scholar
  44. 44.
    D.G. Rees, S.-S. Yeh, B.-C. Lee, K. Kono, J.-J. Lin, Phys. Rev. B 96, 205438 (2017)ADSCrossRefGoogle Scholar
  45. 45.
    J.A. Anderson, C.D. Lorenz, A. Travesset, J. Comput. Phys. 227, 5342 (2008)ADSCrossRefGoogle Scholar
  46. 46.
    J. Glaser, T.D. Nguyen, J.A. Anderson, P. Lui, F. Spiga, J.A. Millan, D.C. Morse, S.C. Glotzer, Comput. Phys. Commun. 192, 97 (2015)ADSCrossRefGoogle Scholar
  47. 47.
    E. Hairer, C. Lubich, G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, vol. 31 (Springer, New York, 2006)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics and AstronomyMichigan State UniversityEast LansingUSA

Personalised recommendations