Advertisement

The Effect of the Interphase Kinetics on the Motion of a Quantum Crystal in Superfluid Liquid

  • V. L. TsymbalenkoEmail author
Article
  • 8 Downloads

Abstract

The fall of a quantum crystal in the state of “burst-like growth” in a superfluid liquid is considered. The experimental data of the pressure variation in the container during the fall of a crystal are discussed. The model of the motion of the crystal is suggested taking the interface dynamics into account. The results for the numerical simulation of the fall of a crystal are consistent with the experimental data. We find a significant effect of the liquid–crystal interface kinetics on the hydrodynamics of the liquid flow encircling a crystal.

Keywords

Quantum solids Hcp solid helium Growth kinetics Hydrodynamics 

Notes

Acknowledgements

The author is grateful to S. T. Boldarev and R. B. Gusev, colleagues at Kapitza Institute, for Physical Problems for cooperation in the experiments on the growth of crystals in the optical refrigerator. Special thanks to S. N. Burmistrov for fruitful discussions and valuable comments. The author is grateful to V. S. Kruglov for interest and support of the work.

References

  1. 1.
    L.D. Landau, E.M. Lifshits, Fluid Mechanics (Pergamon Press, Oxford, 1987)zbMATHGoogle Scholar
  2. 2.
    S. Balibar, A.Y. Parshin, H. Alles, Rev. Mod. Phys. 77, 317 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    A.F. Andreev, A.Y. Parshin, Sov. Phys. JETP 48, 763 (1978)ADSGoogle Scholar
  4. 4.
    V.L. Tsymbalenko, Fiz. Nizk. Temp. 21, 162 (1995)Google Scholar
  5. 5.
    V.L. Tsymbalenko, Low Temp. Phys. 21, 120 (1995)ADSGoogle Scholar
  6. 6.
    V.L. Tsymbalenko, J. Low Temp. Phys. 171, 21 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    R. Nomura, Y. Okuda, A. Tachiki, T. Yoshida, New J. Phys. 16, 113022 (2014)CrossRefGoogle Scholar
  8. 8.
    V.L. Tsymbalenko, Physics-Uspekhi 58, 1059 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    J.P. Ruutu, P.J. Hakonen, A.V. Babkin, A.Y. Parshin, G. Tvalashvili, J. Low Temp. Phys. 112, 117 (1998)ADSCrossRefGoogle Scholar
  10. 10.
    V.L. Tsymbalenko, Phys. Lett. A 248, 267 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    V.L. Tsymbalenko, Phys. Lett. A 257, 209 (1999)ADSCrossRefGoogle Scholar
  12. 12.
    A. Chernov et al., Modern Crystallography Vol. 3 Crystal Growth (Springer, Berlin, 1984)Google Scholar
  13. 13.
    V.L. Tsymbalenko, Sov. Phys. JETP 99, 1214 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    V.L. Tsymbalenko, Sov. Phys. JETP 45, 989 (1977)ADSGoogle Scholar
  15. 15.
    V.L. Tsymbalenko, J. Low Temp. Phys. 88, 55 (1992)ADSCrossRefGoogle Scholar
  16. 16.
    S.N. Burmistrov, L.B. Dubovskii, V.L. Tsymbalenko, Phys. Rev. E 79, 051606 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    Y. Abe, S.N. Burmistrov, T. Satoh, HAIT J. Sci. Eng. 1, 287 (2004)Google Scholar
  18. 18.
    V.L. Tsymbalenko, Sov. Phys. JETP 92, 1024 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    P. Nozieres, M. Uwaha, J. Phys. 47, 263 (1986)CrossRefGoogle Scholar
  20. 20.
    H. Lamb, Hydrodynamics (University Press, Cambridge, 1916)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.National Research Center “Kurchatov Institute”MoscowRussia

Personalised recommendations