Advertisement

Journal of Low Temperature Physics

, Volume 195, Issue 1–2, pp 138–152 | Cite as

A Spiral Surface Acoustic Wave Transducer for Quantum Information Processing

  • Alan SalariEmail author
  • Amin Darvazehban
Article
  • 162 Downloads

Abstract

A superconducting surface acoustic wave transducer with a spiral geometry is proposed. This transducer is particularly useful for quantum information processing at cryogenic temperatures. Compared to an interdigital transducer, which launches acoustic waves in two directions, a spiral transducer (SPT) is capable of launching waves in four directions. This property allows to utilize the substrate surface in a more efficient way due to the transition from a line to a surface. Most importantly this kind of transducer gives us new possibilities for quantum information processing, since it can be used as a superconducting transmon qubit, which can be simultaneously coupled to two acoustic cavities. Moreover, it can be used for acoustic transport of quantum dot qubits, which could improve the means for long-range coupling of the qubits. The SPT has been simulated using COMSOL simulator, and it is also modeled using P-matrix and delta function model.

Keywords

Superconducting components and technology Quantum devices and circuits SAW devices Quantum dot Passive microwave components 

Notes

Acknowledgements

Alan Salari acknowledges David P. DiVincenzo for the support and helpful discussions.

References

  1. 1.
    F. Marquardt, S.M. Girvin, Optomechanics. Physics 2, 40 (2009)CrossRefGoogle Scholar
  2. 2.
    M.V. Gustafsson, T. Aref, A.F. Kockum, M.K. Ekstrom, G. Johansson, P. Delsing, Propagating phonons coupled to an artificial atom. Science 346(6206), 207–211 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    A.N. Bolgar, J.I. Zotova, D.D. Kirichenko, I.S. Besedin, A.V. Semenov, R.S. Shaikhaidarov, O.V. Astafiev, Quantum regime of a two-dimensional phonon cavity. Phys. Rev. Lett. 120, 223603 (2018)ADSCrossRefGoogle Scholar
  4. 4.
    D.P. DiVincenzo, Quantum Surface Acoustics (Juelich Research Center, Juelich, 2015)Google Scholar
  5. 5.
    T. Aref, P. Delsing, M.K. Ekstrom, A.F. Kockum, M.V. Gustafsson, G. Johansson, P. Leek, E. Magnusson, R. Manenti, Quantum acoustics with surface acoustic waves, in Superconducting Devices in Quantum Optics. Quantum Science and Technology, ed. by R. Hadfield, G. Johansson (Springer, Cham, 2016)Google Scholar
  6. 6.
    A.F. Kockum, P. Delsing, G. Johansson, Designing frequency-dependent relaxation rates and Lamb shift for a giant artificial atom. Phys. Rev. A 90(1), 013837 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    D. Morgan, Surface Acoustic Wave Filters (Academic Press, Boston, 2007), pp. 106–110Google Scholar
  8. 8.
    M. Kindermann, Nanoelectronics: shuttle transport for single electrons. Nat. Nanotechnol. 6, 691692 (2011)CrossRefGoogle Scholar
  9. 9.
    D. Loss, D.P. DiVincenzo, Quantum computation with quantum dots. Phys. Rev. A 57, 120126 (1998)CrossRefGoogle Scholar
  10. 10.
    R.P.G. McNeil, M. Kataoka, C.J.B. Ford, C.H.W. Barnes, D. Anderson, G.A.C. Jones, I. Farrer, D.A. Ritchie, On-demand single-electron transfer between distant quantum dots. Nature 477, 439442 (2011)CrossRefGoogle Scholar
  11. 11.
    D.P. DiVincenzo, Unpublished notes (2015)Google Scholar
  12. 12.
    M.D. Shulman, O.E. Dial, S.P. Harvey, H. Bluhm, V. Umansky, A. Yacoby, Demonstration of entanglement of electrostatically coupled singlet–triplet qubits. Science 336(6078), 202–205 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    B.A. Moores, L.R. Sletten, J.J. Viennot, K.W. Lehnert, Cavity quantum acoustic device in the multimode strong coupling regime. Phys. Rev. Lett. 120, 227701 (2018)ADSCrossRefGoogle Scholar
  14. 14.
    R. Manenti, A. F. Kockum, A. Patterson, T. Behrle, J. Rahamim, G. Tancredi, F. Nori, P. J. Leek, Circuit quantum acoustodynamics with surface acoustic waves. Nat. Commun. 8, Article number: 975 (2017)Google Scholar
  15. 15.
    M.K. Ekstrom, T. Aref, J. Runeson, J. Bjorck, I. Bostrom, P. Delsing, Surface acoustic wave unidirectional transducers for quantum applications. Appl. Phys. Lett. 110, 073105 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    P.J. Leek, M. Baur, J.M. Fink, R. Bianchetti, L. Steffen, S. Filipp, A. Wallraff, Cavity quantum electrodynamics with separate photon storage and qubit readout modes. Phys. Rev. Lett. 104, 100504 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    M.J.A. Schuetz, E.M. Kessler, G. Giedke, L.M.K. Vandersypen, M.D. Lukin, J.I. Cirac, Universal quantum transducers based on surface acoustic waves. Phys. Rev. X 5, 031031 (2015)Google Scholar
  18. 18.
    M. White, Surface elastic waves. Proc. IEEE 58(8), 1238–1276 (1970)CrossRefGoogle Scholar
  19. 19.
    B. Bertrand, S. Hermelin, S. Takada, M. Yamamoto, S. Tarucha, A. Ludwig, A.D. Wieck, C. Buerle, T. Meunier, Long-range spin transfer using individual electrons. Appl. Phys. Lett. 109, 043101 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    COMSOL Multiphysics v. 5.2Google Scholar
  21. 21.
    S. Haroche, J.M. Raimond, Exploring the Quantum, Atom, Cavities, and Photons (Oxford University press, Oxford, 2006), p. 23CrossRefzbMATHGoogle Scholar
  22. 22.
    A. Blais, R.-S. Huang, A. Wallraff, S.M. Girvin, R.J. Schoelkopf, Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys. Rev. A 69.6, 062320 (2004)CrossRefGoogle Scholar
  23. 23.
    R. Manenti, M.J. Peterer, A. Nersisyan, E.B. Magnusson, A. Patterson, P.J. Leek, Surface acoustic wave resonators in the quantum regime. Phys. Rev. B 93, 041411(R) (2016)ADSCrossRefGoogle Scholar
  24. 24.
    L. Tornberg, S. Barzanjeh, D.P. DiVincenzo, Stochastic master equation analysis of optimized three-qubit nondemolition parity measurement. Phys. Rev. A 89, 032314 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    L. Sun, A. Petrenko, Z. Leghtas, B. Vlastakis, G. Kirchmair, K.M. Sliwa, A. Narla, M. Hatridge, S. Shankar, J. Blumoff, L. Frunzio, M. Mirrahimi, M.H. Devoret, R.J. Schoelkopf, Tracking photon jumps with repeated quantum non-demolition parity measurements. Nature 511, 444448 (2014)CrossRefGoogle Scholar
  26. 26.
    Y.J. Zhao, C. Wang, X. Zhu, Y.X. Liu, Engineering entangled microwave photon states through multiphoton interactions between two cavity fields and a superconducting qubit. Sci. Rep. (2016)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute for Quantum InformationRWTH Aachen UniversityAachenGermany
  2. 2.Institute of Physics IIUniversity of CologneCologneGermany
  3. 3.Electrical Engineering DepartmentUniversity of QueenslandBrisbaneAustralia

Personalised recommendations