Advertisement

Computer Simulation Study of Nanoscale Size Parahydrogen Clusters

  • Massimo Boninsegni
Article
  • 8 Downloads

Abstract

We present results of computer simulations of a parahydrogen cluster of a thousand molecules, corresponding to approximately 4 nm in diameter, at temperatures between 1 and 10  K. Examination of structural properties suggests that the local environment experienced by molecules is very similar to that in solid bulk parahydrogen, especially near the center of the cluster, where crystallization originates. Albeit strongly suppressed compared to helium, quantum-mechanical exchanges are not entirely negligible at the lowest temperature, resulting in a small but significant molecular mobility enhancement with respect to the bulk crystalline phase. Although the overall superfluid response at the lowest temperature is only few percents, there is evidence of a surprising “supersolid” core, as well as of a superfluid outer shell. Much like in fluid parahydrogen at the melting temperature, quantum-mechanical signatures can be detected in the momentum distribution.

Keywords

Molecular hydrogen Superfluidity Quantum clusters Bose–Einstein condensation Quantum Monte Carlo 

Notes

Acknowledgements

This work was supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC). The author gratefully acknowledges the hospitality of the International Centre for Theoretical Physics, Trieste, where most of this research work was carried out.

References

  1. 1.
    V.L. Ginzburg, A.A. Sobyanin, JETP Lett. 15, 242 (1972)ADSGoogle Scholar
  2. 2.
    A.C. Clark, X. Lin, M.H.W. Chan, Phys. Rev. Lett. 97, 245301 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    M. Bretz, A.L. Thomson, Phys. Rev. B 24, 467 (1981)ADSCrossRefGoogle Scholar
  4. 4.
    M. Schindler, A. Dertinger, Y. Kondo, F. Pobell, Phys. Rev. B 53, 11451 (1996)ADSCrossRefGoogle Scholar
  5. 5.
    P.E. Sokol, R.T. Azuah, M.R. Gibbs, S.M. Bennington, J. Low Temp. Phys. 103, 23 (1996)ADSCrossRefGoogle Scholar
  6. 6.
    M. Boninsegni, Phys. Rev. B 70, 193411 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    M. Boninsegni, Phys. Rev. Lett. 111, 235303 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    M. Boninsegni, New J. Phys. 7, 78 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    J. Turnbull, M. Boninsegni, Phys. Rev. B 78, 144509 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    M. Boninsegni, Phys. Rev. B 93, 054507 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    M. Boninsegni, A.B. Kuklov, L. Pollet, N.V. Prokof’ev, B.V. Svistunov, M. Troyer, Phys. Rev. Lett. 99, 035301 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    T. Omiyinka, M. Boninsegni, Phys. Rev. B 93, 104501 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    A. Del Maestro, M. Boninsegni, Phys. Rev. B 95, 054517 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    M. Boninsegni, Phys. Rev. B 97, 054517 (2018)ADSCrossRefGoogle Scholar
  15. 15.
    P. Sindzingre, M.L. Klein, D.M. Ceperley, Phys. Rev. Lett. 63, 1601 (1989)ADSCrossRefGoogle Scholar
  16. 16.
    P. Sindzingre, D.M. Ceperley, M.L. Klein, Phys. Rev. Lett. 67, 1871 (1991)ADSCrossRefGoogle Scholar
  17. 17.
    F. Mezzacapo, M. Boninsegni, Phys. Rev. Lett. 97, 045301 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    F. Mezzacapo, M. Boninsegni, Phys. Rev. A 75, 033201 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    F. Mezzacapo, M. Boninsegni, J. Phys. Condens. Matter 21, 164205 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    Y. Kwon, K.B. Whaley, Phys. Rev. Lett 89, 273401 (2002)ADSCrossRefGoogle Scholar
  21. 21.
    H. Li, R.J. Le Roy, P.-N. Roy, A.R.W. McKellar, Phys. Rev. Lett. 105, 133401 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    T. Omiyinka, M. Boninsegni, Phys. Rev. B 90, 064511 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    S. Grebenev, B. Sartakov, J.P. Toennies, A.F. Vilesov, Science 289, 1532 (2000)ADSCrossRefGoogle Scholar
  24. 24.
    F. Mezzacapo, M. Boninsegni, J. Phys. Chem. A 115, 6831 (2011)CrossRefGoogle Scholar
  25. 25.
    R.S. Berry, T.L. Beck, H.L. Davis, Adv. Chem. Phys. 70, 75 (1988)Google Scholar
  26. 26.
    C. Chakravarty, J. Chem. Phys. 103, 10663 (1995)ADSCrossRefGoogle Scholar
  27. 27.
    S.A. Khairallah, M.B. Sevryuk, D.M. Ceperley, J.P. Toennies, Phys. Rev. Lett. 98, 183401 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    J.E. Cuervo, P.-N. Roy, J. Chem. Phys. 128, 224509 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    R. Guardiola, J. Navarro, Cent. Eur. J. Phys. 6, 33 (2008)Google Scholar
  30. 30.
    K. Kuyanov-Prozument, A.F. Vilesov, Phys. Rev. Lett. 101, 205301 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    F. Mezzacapo, M. Boninsegni, Phys. Rev. Lett. 100, 145301 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    M. Wagner, D.M. Ceperley, J. Low Temp. Phys. 94, 161 (1994)ADSCrossRefGoogle Scholar
  33. 33.
    E.S. Hernandez, M.W. Cole, M. Boninsegni, Phys. Rev. B 68, 125418 (2003)ADSCrossRefGoogle Scholar
  34. 34.
    I.F. Silvera, V.V. Goldman, J. Chem. Phys. 69, 4209 (1978)ADSCrossRefGoogle Scholar
  35. 35.
    T. Omiyinka, M. Boninsegni, Phys. Rev. B 88, 024112 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    M. Boninsegni, N. Prokof’ev, B. Svistunov, Phys. Rev. Lett. 96, 070601 (2006)ADSCrossRefGoogle Scholar
  37. 37.
    M. Boninsegni, N. Prokof’ev, B. Svistunov, Phys. Rev. E 74, 036701 (2006)ADSCrossRefGoogle Scholar
  38. 38.
    R.P. Feynman, A.R. Hibbs, Quantum Mechanics and Path Integrals, Ch. 10 (McGraw-Hills, New York, 1965)zbMATHGoogle Scholar
  39. 39.
    M. Boninsegni, J. Low Temp. Phys. 141, 27 (2005)ADSCrossRefGoogle Scholar
  40. 40.
    Y. Kwon, F. Paesani, K.B. Whaley, Phys. Rev. B 74, 174522 (2006)ADSCrossRefGoogle Scholar
  41. 41.
    M. Dusseault, M. Boninsegni, Phys. Rev. B 95, 104518 (2017)ADSCrossRefGoogle Scholar
  42. 42.
    M. Boninsegni, M.W. Cole, F. Toigo, Phys. Rev. Lett. 83, 2002 (1999)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of AlbertaEdmontonCanada

Personalised recommendations